scholarly journals Influence of Genistein on Hepatic Lipid Metabolism in an In Vitro Model of Hepatic Steatosis

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1156
Author(s):  
Lena Seidemann ◽  
Anne Krüger ◽  
Victoria Kegel-Hübner ◽  
Daniel Seehofer ◽  
Georg Damm

Nonalcoholic fatty liver disease (NAFLD) is among the leading causes of end-stage liver disease. The impaired hepatic lipid metabolism in NAFLD is exhibited by dysregulated PPARα and SREBP-1c signaling pathways, which are central transcription factors associated with lipid degradation and de novo lipogenesis. Despite the growing prevalence of this disease, current pharmacological treatment options are unsatisfactory. Genistein, a soy isoflavone, has beneficial effects on lipid metabolism and may be a candidate for NAFLD treatment. In an in vitro model of hepatic steatosis, primary human hepatocytes (PHHs) were incubated with free fatty acids (FFAs) and different doses of genistein. Lipid accumulation and the cytotoxic effects of FFAs and genistein treatment were evaluated by colorimetric and enzymatic assays. Changes in lipid homeostasis were examined by RT-qPCR and Western blot analyses. PPARα protein expression was induced in steatotic PHHs, accompanied by an increase in CPT1L and ACSL1 mRNA. Genistein treatment increased PPARα protein expression only in control PHHs, while CPTL1 and ACSL1 were unchanged and PPARα mRNA was reduced. In steatotic PHHs, genistein reversed the increase in activated SREBP-1c protein. The model realistically reflected the molecular changes in hepatic steatosis. Genistein suppressed the activation of SREBP-1c in steatotic hepatocytes, but the genistein-mediated effects on PPARα were abolished by high hepatic lipid levels.

2020 ◽  
Vol 61 (4) ◽  
pp. 470-479 ◽  
Author(s):  
Sookyoung Jeon ◽  
Rotonya Carr

Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease with significant morbidity and mortality worldwide. ALD begins with simple hepatic steatosis and progresses to alcoholic steatohepatitis, fibrosis, and cirrhosis. The severity of hepatic steatosis is highly associated with the development of later stages of ALD. This review explores the disturbances of alcohol-induced hepatic lipid metabolism through altered hepatic lipid uptake, de novo lipid synthesis, fatty acid oxidation, hepatic lipid export, and lipid droplet formation and catabolism. In addition, we review emerging data on the contributions of genetics and bioactive lipid metabolism in alcohol-induced hepatic lipid accumulation.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052098210
Author(s):  
Quan Wang ◽  
Jingcong Luo ◽  
Ruiqiang Sun ◽  
Jia Liu

Objective Common inhalation anesthetics used for clinical anesthesia (such as sevoflurane) may induce nerve cell apoptosis during central nervous system development. Furthermore, anesthetics can produce cognitive impairments, such as learning and memory impairments, that continue into adulthood. However, the precise mechanism remains largely undefined. We aimed to determine the function of microRNA-1297 (miR-1297) in sevoflurane-induced neurotoxicity. Methods Reverse transcription-polymerase chain reaction assays were used to analyze miR-1297 expression in sevoflurane-exposed mice. MTT and lactate dehydrogenase (LDH) assays were used to measure cell growth, and neuronal apoptosis was analyzed using flow cytometry. Western blot analyses were used to measure PTEN, PI3K, Akt, and GSK3β protein expression. Results In sevoflurane-exposed mice, miR-1297 expression was up-regulated compared with the control group. MiR-1297 up-regulation led to neuronal apoptosis, inhibition of cell proliferation, and increased LDH activity in the in vitro model of sevoflurane exposure. MiR-1297 up-regulation also suppressed the Akt/GSK3β signaling pathway and induced PTEN protein expression in the in vitro model. PTEN inhibition (VO-Ohpic trihydrate) reduced PTEN protein expression and decreased the effects of miR-1297 down-regulation on neuronal apoptosis in the in vitro model. Conclusion Collectively, the results indicated that miR-1297 stimulates sevoflurane-induced neurotoxicity via the Akt/GSK3β signaling pathway by regulating PTEN expression.


2003 ◽  
Vol 39 (6) ◽  
pp. 954-959 ◽  
Author(s):  
Raúl Tonda ◽  
Ana Marı́a Galán ◽  
Marcos Pino ◽  
Isabel Cirera ◽  
Jaume Bosch ◽  
...  

Nutrition ◽  
2016 ◽  
Vol 32 (7-8) ◽  
pp. 827-833 ◽  
Author(s):  
Haizhao Song ◽  
Tao Wu ◽  
Dongdong Xu ◽  
Qiang Chu ◽  
Dingbo Lin ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Liang Liu ◽  
Qinling Hu ◽  
Huihui Wu ◽  
Xiujing Wang ◽  
Chao Gao ◽  
...  

Diets containing various docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) ratios protect against liver damage in mice fed with a high-fat diet (HFD). However, it is unclear whether these beneficial roles of DHA and EPA are associated with alterations of fatty acid (FA) composition in the liver. This study evaluated the positive impacts of n-6/n-3 polyunsaturated fatty acids (PUFAs) containing different DHA/EPA ratios on HFD-induced liver disease and alterations of the hepatic FA composition. ApoE−/− mice were fed with HFDs with various ratios of DHA/EPA (2 : 1, 1 : 1, and 1 : 2) and an n-6/n-3 ratio of 4 : 1 for 12 weeks. After treatment, the serum and hepatic FA compositions, serum biochemical parameters, liver injury, and hepatic lipid metabolism-related gene expression were determined. Our results demonstrated that dietary DHA/EPA changed serum and hepatic FA composition by increasing contents of n-6 and n-3 PUFAs and decreasing amounts of monounsaturated fatty acids (MUFAs) and the n-6/n-3 ratio. Among the three DHA/EPA groups, the DHA/EPA 2 : 1 group tended to raise n-3 PUFAs concentration and lower the n-6/n-3 ratio in the liver, whereas DHA/EPA 1 : 2 tended to raise n-6 PUFAs concentration and improve the n-6/n-3 ratio. DHA/EPA supplementation reduced the hepatic impairment of lipid homeostasis, oxidative stress, and the inflammatory responses in HFD-fed mice. The DHA/EPA 2 : 1 group had lower serum levels of total cholesterol, triglycerides, and low-density lipoprotein cholesterol and higher levels of adiponectin than HFD group. The DHA/EPA 1 : 2 group had elevated serum levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase, without significant change the expression of genes for inflammation or hepatic lipid metabolism among the three DHA/EPA groups. The results suggest that DHA/EPA-enriched diet with an n-6/n-3 ratio of 4 : 1 may reverse HFD-induced nonalcoholic fatty liver disease to some extent by increasing n-6 and n-3 PUFAs and decreasing the amount of MUFAs and the n-6/n-3 ratio.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2827-2827
Author(s):  
Miguel Gallardo ◽  
Marisol Fernandez ◽  
Alberto Paradela ◽  
Oscar Toldos ◽  
Rosa-Maria Garcia-Martin ◽  
...  

Abstract Abstract 2827 Background Proteomic screening is a useful tool to find new therapeutic targets. Genetic molecular studies are frequent in myeloproliferative neoplasms (MPN), however proteomic screening studies are limited. HSP70 is a Heat Shock protein related to apoptosis supression and erythroid differenciation through GATA-1. Additionally, other HSP, as HSP90. have been found as novel therapies in Polycythemia Vera (PV) and Essential thrombocythemia (ET) (Marubayashi et al, Journal of Clinical Investigation, 2010Oct). Aims To analyze the phenotypic divergence between PV and ET by a proteomic screening, and to validate these results by protein expression analysis and in vitro model of MPN, with the aim of identifying alternative routes for targeted therapy. Methods Seventy-one MPN diagnosed by WHO criteria were included in the study: 25 PV, 24 ET JAK2V617F, 12 ETJAK2 Wild Type (JAK2WT) negative and 11 Primary Myelofibrosis (PMF). Additionally 24 healthy subjects were used as controls. First of all, granulocytes from whole venous peripheral blood were isolated and the corresponding cytosolic protein fraction was extracted. Cytosolic proteomes of 10 PV, 10 ET and 10 healthy subjects were analyzed using 2D-DIGE gels followed by MALDI-TOFTOF mass spectrometry (MS) analysis of the spots of interest. Results were analyzed with DeCyder v7.0 and Mascot software. Secondly, bone marrow biopsies (BMB) of 55 MPN patients (11 PV, 11 ET JAK2V617F, 11 ET JAK2WT, 11 PMF and 11 healthy controls) were selected to perform immunohistochemistry (IHC) with anti-HSPA1A (HSP70), anti-SERPINB1 and anti-LTA4H. Afterwards, western blot of these three proteins was performed. Finally, an in vitro model of MPN was employed. Mononuclear cells from 4 PV, 4 ET and 3 healthy donors were extracted and seeded in Methocult with IL-3, SCF and EPO. A HSP70 inhibition assay was performed by the drug KNK437 at 100μM, 50μM and 10μM. Results were analyzed by BFU-E count, viability study by trypan blue and flow cytometry (FCM) employing anti-CD45, anti-CD41, anti-CD34, anti-CD71, and Annexin antibodies. Intracellular proteins including phospho-proteins p38, P-p38, MEK, P-MEK, STAT1, P-STAT1, AKT1 and P-AKT were studied by cytometric bead array multiplexed bead-based immunoassay (CBAs) technique. The Mann-Whitney non-parametrical statistical hypothesis test was used to assess the statistical significance of our results. Results 2D-DIGE analysis found 112 spots with statistically significant differences in protein expression between PV and ET samples. On the other hand, 241 spots showed differential expression between ET and healthy donors, and 229 between PV and healthy donors. We identified, by MS, 67 proteins differentially expressed between PV and ET, 20 between PV and controls and 6 between ET and controls. A large number of these proteins were metabolic and citoskeleton proteins, as Lactotranferrin, Enolase, Actin, etc. However, three spots were especially interesting according to our hypothesis: SERPINB1, LTA4H and HSPA1A (HSP70); the last, chaperone related with GATA-1 and erythroid differentiation. IHC showed over-expression of HSPA1A in granulocytes of PV (72% positives patients, 80% positive granulocytes) compared to ET (50% positive patients, 30% positive granulocytes). Finally, significant differences in inhibition of BFU-E growth and cell proliferation were found between cultures treated with HSP70 inhibitor, KNK437 (100μM and 50μM) versus cultures without treatment (P=0.029). FCM of BFU-E cultures pointed to a dramatic increase of erythroid apoptotic cells. CBAs analysis showed a decrease of P-STAT1 and P-MEK in cells of cultures under KNK437 treatment. Conclusions Our results suggest that HSP70 could play a key role in erythroid survival and differentiation through JAK-STAT and MAPK pathways. These molecules might contribute to their phenotypic divergence. Finally, HSP70 could be a new therapeutic target, and KNK437 a novel PV treatment. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 35 ◽  
pp. S33 ◽  
Author(s):  
N. Tennoune ◽  
S. Bouslah ◽  
S. Le Plénier ◽  
E. Archambault ◽  
R. Ramassamy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document