scholarly journals LC and NMR Studies for Identification and Characterization of Degradation Byproducts of Olmesartan Acid, Elucidation of Their Degradation Pathway and Ecotoxicity Assessment

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1769
Author(s):  
Giovanni Luongo ◽  
Antonietta Siciliano ◽  
Giovanni Libralato ◽  
Sara Serafini ◽  
Lorenzo Saviano ◽  
...  

The discovery of various sartans, which are among the most used antihypertensive drugs in the world, is increasingly frequent not only in wastewater but also in surface water and, in some cases, even in drinking or groundwater. In this paper, the degradation pathway of olmesartan acid, one of the most used sartans, was investigated by simulating the chlorination process normally used in a wastewater treatment plant to reduce similar emerging pollutants. The structures of nine isolated degradation byproducts (DPs), eight of which were isolated for the first time, were separated via chromatography column and HPLC methods, identified by combining nuclear magnetic resonance and mass spectrometry, and justified by a proposed mechanism of formation beginning from the parent drug. Ecotoxicity tests on olmesartan acid and its nine DPs showed that 50% of the investigated byproducts inhibited the target species Aliivibrio fischeri and Raphidocelis subcapitata, causing functional decreases of 18% and 53%, respectively.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3422
Author(s):  
Giovanni Luongo ◽  
Lorenzo Saviano ◽  
Giovanni Libralato ◽  
Marco Guida ◽  
Antonietta Siciliano ◽  
...  

In recent years, many studies have reported the frequent detection of antihypertensive agents such as sartans (olmesartan, valsartan, irbesartan and candesartan) in the influents and effluents of wastewater treatment plants (WWTPs) and in the superficial waters of rivers and lakes in both Europe and North America. In this paper, the degradation pathway for candesartan (CAN) was investigated by simulating the chlorination process that is normally used to reduce microbial contamination in a WWTP. Twelve isolated degradation byproducts (DPs), four of which were isolated for the first time, were separated on a C-18 column by employing a gradient HPLC method, and their structures were identified by combining nuclear magnetic resonance and mass spectrometry and comparing the results with commercial standards. On the basis of these results, a mechanism of formation starting from the parent drug is proposed. The ecotoxicity of CAN and its DPs was studied by conducting a battery of ecotoxicity tests; bioassays were performed using Aliivibrio fischeri (bacterium), Daphnia magna (planktonic crustacean) and Raphidocelis subcapitata (alga). The ecotoxicity results shed new light on the increased toxicity of DPs compared with the parent compound.


2021 ◽  
Vol 11 (12) ◽  
pp. 5393
Author(s):  
Giovanni Luongo ◽  
Antonietta Siciliano ◽  
Giovanni Libralato ◽  
Marco Guida ◽  
Lorenzo Saviano ◽  
...  

Antihypertensive drugs are among the most prescribed drugs. Olmesartan acid, of the sartan class, belongs to a relatively new generation of antihypertensive drugs called angiotensin II receptor blockers. There are very few studies on the presence and fate of sartans in the environment, despite them being marketed in huge quantities, metabolized in low percentages, and detected in wastewater and water bodies. This paper presents a study on the less abundant and more polar fractions that have been neglected in previous studies, which led to the isolation by chromatographic methods of thirteen degradation byproducts (DPs), six of which are new, identified by nuclear magnetic resonance and mass spectrometry. A mechanism of degradation from the parent drug was proposed. The ecotoxicity of olmesartan acid and identified compounds was evaluated in Aliivibrio fischeri bacteria and Raphidocelis subcapitata algae to assess acute and chronic toxicity. For 75% of the DPs, acute and chronic exposure to the compounds, at concentrations of 5 mg/L, inhibited population growth in the algae and decreased bioluminescence in the bacteria.


2020 ◽  
Vol 12 (5) ◽  
pp. 1780 ◽  
Author(s):  
Isabella Pecorini ◽  
Renato Iannelli

With the aim of examining the forcing factors in postmanagement landfills, in this study, excavation waste from nonhazardous municipal waste landfill in Tuscany was characterized for the first time. The specific objective was to estimate the feasibility of sampling and analyzing the excavated waste in order to define its properties and provide information about possible landfill mining projects. Based on the biochemical methane potential assays, it was shown that the excavated waste had not yet been stabilized (i.e., with a production of 52.2 ± 28.7 NlCH4/kgTS) in the landfill, probably due to the low excavated waste moisture content (36% ± 6% w/w). Furthermore, excavated waste has a high calorific value, i.e., 15.2 ± 4.1 MJ/kg; the quantity of combustibles in the industrial shredder waste (16 MJ/kg) was rather modest compared to that of municipal solid waste (20.8 MJ/Kg). In conclusion, during large scale excavation of the landfill, it was possible to evaluate how a dedicated treatment plant could be designed to treat and select waste which might appear in a different category. For excavated industrial waste, detailed mechanical sorting may be convenient for end-of-waste recovery to improve calorific value.


2021 ◽  
Vol 11 (3) ◽  
pp. 1076
Author(s):  
Antonietta Siciliano ◽  
Marco Guida ◽  
Giovanni Libralato ◽  
Lorenzo Saviano ◽  
Giovanni Luongo ◽  
...  

In recent years, many studies have highlighted the consistent finding of amoxicillin in waters destined for wastewater treatment plants, in addition to superficial waters of rivers and lakes in both Europe and North America. In this paper, the amoxicillin degradation pathway was investigated by simulating the chlorination process normally used in a wastewater treatment plant to reduce similar emerging pollutants at three different pH values. The structures of 16 isolated degradation byproducts (DPs), one of which was isolated for the first time, were separated on a C-18 column via a gradient HPLC method. Combining mass spectrometry and nuclear magnetic resonance, we then compared commercial standards and justified a proposed formation mechanism beginning from the parent drug. Microbial growth inhibition bioassays with Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were performed to determine the potential loss of antibacterial activity in isolated degradation byproducts. An increase of antibacterial activity in the DPs was observed compared to the parent compound.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2325
Author(s):  
Alexander W. Jackson ◽  
Srinivasa Reddy Mothe ◽  
Lohitha Rao Chennamaneni ◽  
Alexander van Herk ◽  
Praveen Thoniyot

Degradable analogues of polystyrene are synthesized via radical ring-opening (co)polymerization (rROP) between styrene and two cyclic ketene acetals, namely 2-methylene-1,3-dioxepane (MDO) and 5,6-benzo-2-methylene-1,3-dioxepane (BMDO). This approach periodically inserts ester bonds throughout the main chain of polystyrene, imparting a degradation pathway via ester hydrolysis. We discuss the historical record of this approach, with careful attention paid to the conflicting findings previously reported. We have found a common 1H NMR characterization error, repeated throughout the existing body of work. This misinterpretation is responsible for the discrepancies within the cyclic ketene acetal (CKA)-based degradable polystyrene literature. These inconsistencies, for the first time, are now understood and resolved through optimization of the polymerization conditions, and detailed characterization of the degradable copolymers and their corresponding oligomers after hydrolytic degradation.


Microbiology ◽  
2010 ◽  
Vol 156 (2) ◽  
pp. 589-595 ◽  
Author(s):  
Xueqian Liu ◽  
Yangpeng Dong ◽  
Xiaomin Li ◽  
Yi Ren ◽  
Yanxia Li ◽  
...  

Anthranilate is an important intermediate of tryptophan metabolism. In this study, a hydroxylase system consisting of an FADH2-utilizing monooxygenase (GTNG_3160) and an FAD reductase (GTNG_3158), as well as a bifunctional riboflavin kinase/FMN adenylyltransferase (GTNG_3159), encoded in the anthranilate degradation gene cluster in Geobacillus thermodenitrificans NG80-2 were functionally characterized in vitro. GTNG_3159 produces FAD to be reduced by GTNG_3158 and the reduced FAD (FADH2) is utilized by GTNG_3160 to convert anthranilate to 3-hydroxyanthranilate (3-HAA), which is further degraded to acetyl-CoA through a meta-cleavage pathway also encoded in the gene cluster. Utilization of this pathway for the degradation of anthranilate and tryptophan by NG80-2 under physiological conditions was confirmed by real-time RT-PCR analysis of representative genes. This is believed to be the first time that the degradation pathway of anthranilate via 3-HAA has been characterized in a bacterium. This pathway is likely to play an important role in the survival of G. thermodenitrificans in the oil reservoir conditions from which strain NG80-2 was isolated.


2020 ◽  
Author(s):  
Jie Tang ◽  
Qiong Hu ◽  
Dan Lei ◽  
Min Wu ◽  
Chaoyi Zeng ◽  
...  

Abstract Deltamethrin and its major metabolite 3-phenoxybenzoic acid (3‐PBA) have caused serious threat to the environment as well as human health, yet little is known about their degradation pathways by bacterial co-cultures. In this study, the growth and degradation kinetics of Acinetobacter junii LH-1-1 and Klebsiella pneumoniae BPBA052 during deltamethrin and 3-PBA degradation were established, respectively. When the inoculum proportion of the strains LH-1-1 and BPBA052 was 7.5:2.5, and LH-1-1 was inoculated 24 h before inoculation of strain BPBA052, 94.25% deltamethrin was degraded and 9.16 mg/L of 3-PBA remained within 72 h, which was 20.36% higher and 10.25 mg/L lesser than that in monoculture of LH-1-1, respectively. And the half-life of deltamethrin was shortened from 38.40 h to 24.58 h. Based on gas chromatography–mass spectrometry, 3-phenoxybenzaldehyde, 1,2-benzenedicarboxylic butyl dacyl ester, and phenol were identified as metabolites during deltamethrin degradation in co-culture. This is the first time that a co-culture degradation pathway of deltamethrin has been proposed based on these identified metabolites. Bioremediation of deltamethrin-contaminated soils with co-culture of strains LH-1-1 and BPBA052 significantly enhanced deltamethrin degradation and 3-PBA removal. This study provides a platform for further studies on deltamethrin and 3-PBA biodegradation mechanism in co-culture, and it also proposes a promising approach for efficient bioremediation of environment contaminated by pyrethroid pesticides and their associated metabolites.


Author(s):  
Antonietta Siciliano ◽  
Marco Guida ◽  
Giovanni Libralato ◽  
Lorenzo Saviano ◽  
Giovanni Luongo ◽  
...  

In recent years, many studies have highlighted the consistent finding of amoxicillin in waters destined for wastewater treatment plants, in addition to superficial waters of rivers and lakes in both Europe and North America. In this paper, the amoxicillin degradation pathway was investigated by simulating the chlorination process normally used in a wastewater treatment plant to reduce similar emerging pollutants at three different pH values. The structures of 16 isolated degradation byproducts (DPs), one of which was isolated for the first time, were separated on a C-18 column via a gradient HPLC method. Then, combining mass spectrometry (MALDI-MS/TOF) and nuclear magnetic resonance, we compared commercial standards and justified a proposed formation mechanism beginning from the parent drug. Microbial growth inhibition bioassays with Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were performed to determine the potential loss of antibacterial activity in isolated degradation byproducts. An increase of antibacterial activity in the DPs was observed compared to the parent compound.


Tick-borne encephalitis virus (TBEV) was isolated for the first time in Sweden in 1958 (from ticks and from 1 tick-borne encephalitis [TBE] patient).1 In 2003, Haglund and colleagues reported the isolation and antigenic and genetic characterization of 14 TBEV strains from Swedish patients (samples collected 1991–1994).2 The first serum sample, from which TBEV was isolated, was obtained 2–10 days after onset of disease and found to be negative for anti-TBEV immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA), whereas TBEV-specific IgM (and TBEV-specific immunoglobulin G/cerebrospinal fluid [IgG/CSF] activity) was demonstrated in later serum samples taken during the second phase of the disease.


2017 ◽  
Vol 124 (3) ◽  
pp. 215-222 ◽  
Author(s):  
JR López ◽  
L Lorenzo ◽  
R Alcantara ◽  
JI Navas

Sign in / Sign up

Export Citation Format

Share Document