scholarly journals Facile Synthesis of Sponge-Like Porous Nano Carbon-Coated Silicon Anode with Tunable Pore Structure for High-Stability Lithium-Ion Batteries

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3211
Author(s):  
Shugui Song ◽  
Jingcang Li ◽  
Anqi Zheng ◽  
Yongqiang Yang ◽  
Kuibo Yin

To address the challenge of the huge volume expansion of silicon anode, carbon-coated silicon has been developed as an effective design strategy due to the improved conductivity and stable electrochemical interface. However, although carbon-coated silicon anodes exhibit improved cycling stability, the complex synthesis methods and uncontrollable structure adjustment still make the carbon-coated silicon anodes hard to popularize in practical application. Herein, we propose a facile method to fabricate sponge-like porous nano carbon-coated silicon (sCCSi) with a tunable pore structure. Through the strategy of adding water into precursor solution combined with a slow heating rate of pre-oxidation, a sponge-like porous structure can be formed. Furthermore, the porous structure can be controlled through stirring temperature and oscillation methods. Owing to the inherent material properties and the sponge-like porous structure, sCCSi shows high conductivity, high specific surface area, and stable chemical bonding. As a result, the sCCSi with normal and excessive silicon-to-carbon ratios all exhibit excellent cycling stability, with 70.6% and 70.2% capacity retentions after 300 cycles at 500 mA g−1, respectively. Furthermore, the enhanced buffering effect on pressure between silicon nanoparticles and carbon material due to the sponge-like porous structure in sCCSi is further revealed through mechanical simulation. Considering the facile synthesis method, flexible regulation of porous structure, and high cycling stability, the design of the sCCSi paves a way for the synthesis of high-stability carbon-coated silicon anodes.

2014 ◽  
Vol 2 (32) ◽  
pp. 12785-12791 ◽  
Author(s):  
Shengyang Tao ◽  
Yuchao Wang ◽  
Da Shi ◽  
Yonglin An ◽  
Jieshan Qiu ◽  
...  

A facile method to balance the high graphitization and outstanding porous structure in carbon monolithsviananocasting with porous silica.


2020 ◽  
Vol 56 (32) ◽  
pp. 4448-4451 ◽  
Author(s):  
Yan Guo ◽  
Shuai Chen ◽  
Yuan Li ◽  
Yunwei Wang ◽  
Houbing Zou ◽  
...  

A significant porous structure effect of mesoporous rhodium nanoparticles on the electrocatalytic methanol oxidation reaction was reported.


2020 ◽  
Vol 40 (7) ◽  
pp. 591-599
Author(s):  
Yaling Tian ◽  
Kai Liang ◽  
Yali Ji

AbstractThe citrate-based thermoset elastomer is a promising candidate for bone scaffold material, but the harsh curing condition made it difficult to fabricate porous structure. Recently, poly (1, 8-octanediol-co-Pluronic F127 citrate) (POFC) porous scaffold was creatively fabricated by chitin nanofibrils (ChiNFs) supported emulsion-freeze-casting. Thanks to the supporting role of ChiNFs, the lamellar pore structure formed by directional freeze-drying was maintained during the subsequent thermocuring. Herein, bioactive glass (BG) was introduced into the POFC porous scaffolds to improve bioactivity. It was found the complete replacement of ChiNF particles with BG particles could not form a stable porous structure; however, existing at least 15 wt% ChiNF could ensure the formation of lamellar pore, and the interlamellar distance increased with BG ratios. Thus, the BG granules did not contribute to the formation of pore structure like ChiNFs, however, they surely endowed the scaffolds with enhanced mechanical properties, improved osteogenesis bioactivity, better cytocompatibility as well as quick degradation rate. Reasonably adjusting BG ratios could balance the requirements of porous structure and bioactivity.


2020 ◽  
Vol 3 (12) ◽  
pp. 12037-12045
Author(s):  
Yang Li ◽  
Yan Wang ◽  
Guirong Cui ◽  
Tianyu Zhu ◽  
Jianfang Zhang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4531
Author(s):  
Mihaela-Ramona Buga ◽  
Adnana Alina Spinu-Zaulet ◽  
Cosmin Giorgian Ungureanu ◽  
Raul-Augustin Mitran ◽  
Eugeniu Vasile ◽  
...  

Porous silica-based materials are a promising alternative to graphite anodes for Li-ion batteries due to their high theoretical capacity, low discharge potential similar to pure silicon, superior cycling stability compared to silicon, abundance, and environmental friendliness. However, several challenges prevent the practical application of silica anodes, such as low coulombic efficiency and irreversible capacity losses during cycling. The main strategy to tackle the challenges of silica as an anode material has been developed to prepare carbon-coated SiO2 composites by carbonization in argon atmosphere. A facile and eco-friendly method of preparing carbon-coated SiO2 composites using sucrose is reported herein. The carbon-coated SiO2 composites were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, cyclic voltammetry, and charge–discharge cycling. A C/SiO2-0.085 M calendered electrode displays the best cycling stability, capacity of 714.3 mAh·g−1, and coulombic efficiency as well as the lowest charge transfer resistance over 200 cycles without electrode degradation. The electrochemical performance improvement could be attributed to the positive effect of the carbon thin layer that can effectively diminish interfacial impedance.


2018 ◽  
Vol 97 ◽  
pp. 24-29 ◽  
Author(s):  
Amr Radwan ◽  
Yueli Liu ◽  
Yanyuan Qi ◽  
Wei Jin ◽  
VanTu Nguyen ◽  
...  

2010 ◽  
Vol 152-153 ◽  
pp. 1650-1659
Author(s):  
Qing Hao Yang ◽  
Guang Xu Cheng ◽  
Zhi Cheng Zhang

In an effort to seek poly(vinyl formal) (PVFM) foams based wound dressing pad material, a series of foamed PVFM materials have been synthesized under varied conditions. The influence of conditions on the properties of PVFM foam, such as mechanical properties, water absorption, pore structure and bulk density, is well discussed individually. It has been shown that both the reactant and acid catalyst affect the degree and speed of acetalization, therefore the mechanical properties, pores continuity and water absorption of the resultant sample. The addition of Na2CO3, surfactant and CMCNa are mainly influencing the porous structure as well as the mechanical properties and water absorption. One best sample with balanced properties is obtained. It possesses higher mechanical strength and water absorption while the other properties are similar, comparing with a commercial surgical PVFM sponge (YJ-1) currently used.


Sign in / Sign up

Export Citation Format

Share Document