scholarly journals Identification, Characterization and Antihypertensive Effect In Vivo of a Novel ACE-Inhibitory Heptapeptide from Defatted Areca Nut Kernel Globulin Hydrolysates

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3308
Author(s):  
Xing Liu ◽  
Guanwen Li ◽  
Huimin Wang ◽  
Nan Qin ◽  
Lili Guo ◽  
...  

The areca (Areca catechu L.) nut kernel (ANK) is a good potential protein source for its high protein content of 9.89–14.62 g/100 g and a high yield of around 300,000 tons per year in China. However, utilization of the areca nut kernel is limited. To expand the usage of ANK in pharmaceutical or foods industries, areca nut kernel globulin was extracted and angiotensin-I converting enzyme (ACE) inhibition peptides were prepared and identified using gel chromatography, reversed phase HPLC separation, UPLC-ESI-MS/MS analysis and in silico screening. Finally, a novel ACE-inhibitory heptapeptide (Ala–Pro–Lys–Ile–Glu–Glu–Val) was identified and chemically synthesized. The combination pattern between APKIEEV and ACE, and the inhibition kinetics, antihypertensive effect and endothlein-1 inhibition activity of APKIEEV were studied. The results of the molecular docking demonstrated that APKIEEV could bind to four active sites (not the key active sites) of ACE via short hydrogen bonds and demonstrated high ACE-inhibitory activity (IC50: 550.41 μmol/L). Moreover, APKIEEV exhibited a significantly lowering effect on both the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats, and had considerable suppression ability on intracellular endothelin-1. These results highlight the potential usage of APKIEEV as ingredients of antihypertensive drugs or functional foods.

2004 ◽  
Vol 92 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Vanessa Vermeirssen ◽  
John Van Camp ◽  
Willy Verstraete

Hypertension or high blood pressure is a significant health problem worldwide. Bioactive peptides that inhibit angiotensin I converting enzyme (ACE) in the cardiovascular system can contribute to the prevention and treatment of hypertension. These ACE inhibitory peptides are derived from many food proteins, especially milk proteins. An ACE inhibitory activity in vitro does not always imply an antihypertensive effect in vivo. Even if it does, it is very difficult to establish a direct relationship between in vitro and in vivo activity. This is mainly due to the bioavailability of the ACE inhibitory peptides after oral administration and the fact that peptides may influence blood pressure by mechanisms other than ACE inhibition. To exert an antihypertensive effect after oral ingestion, ACE inhibitory peptides have to reach the cardiovascular system in an active form. Therefore, they need to remain active during digestion by human proteases and be transported through the intestinal wall into the blood. The bioavailability of some ACE inhibitory peptides has been studied. It is also known that (hydroxy)proline-containing peptides are generally resistant to degradation by digestive enzymes. Peptides can be absorbed intact through the intestine by paracellular and transcellular routes, but the potency of the bioactivity after absorption is inversely correlated to chain length. In addition, some strategies are proposed to increase the bioavailability of ACE inhibitory peptides. Further research into the bioavailability of ACE inhibitory peptides will lead to the development of more effective ACE inhibitory peptides and foods.


2021 ◽  
Vol 89 (2) ◽  
pp. 27
Author(s):  
Mircea Tămaş ◽  
Oliviu Vostinaru ◽  
Loredana Soran ◽  
Ildiko Lung ◽  
Ocsana Opris ◽  
...  

Solidago virgaurea L. is a perennial plant used in European traditional medicine as a diuretic or a remedy for inflammatory conditions of the urinary tract but also for gout, especially in the Balkans. The present study was focused on a preclinical, in vivo evaluation of antihyperuricemic, anti-inflammatory, and antihypertensive effects of a dry extract from S. virgaurea L. (ESV). Colorimetric and HPLC–MS techniques were used to identify the main chemical constituents of ESV. Antihyperuricemic effect of ESV was assessed in a rat model of hyperuricemia induced by the administration of potassium oxonate. Antihypertensive effect of ESV was evaluated in hyperuricemic rats by monitoring systolic blood pressure with a non-invasive blood-pressure recording system. The anti-inflammatory effect of ESV was tested using a rat model of paw edema. The main chemical constituents of ESV were rutin and phenolic acids represented by chlorogenic and caffeic acid. ESV demonstrated significant antihyperuricemic effects in rats due to an uricosuric mechanism. Additionally, ESV reduced the progression of arterial hypertension in hyperuricemic rats and also showed anti-inflammatory properties slightly inferior to diclofenac. The results suggest that ESV could be a natural remedy for the treatment of gout and protection against endothelial dysfunction caused by hyperuricemia.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Alshuniaber ◽  
Omar Alhaj ◽  
Qasem Abdallah ◽  
Haitham Jahrami

Purpose This study aims to investigate the antihypertensive effect of camel milk hydrolysate in rats with fructose-induced hypertension. Design/methodology/approach The antihypertensive effect of fermented camel milk was determined using 6 groups comprising 36 Wistar male rats. Blood pressure of rats was altered via exposure to a 10% fructose (w/v) diet in drinking water for 3 weeks before conducting 21 days of treatment. The authors conducted the experiment for short and long term using different doses of 800 and 1,200 mg/kg body weight. Serum was used to assay total cholesterol (TC), triglyceride (TG), glucose and insulin levels using standard biochemical kits. Findings The group that received 1,200 mg hydrolysate camel milk (HM) has significantly (p = 0.003) reduced systolic and diastolic blood pressure after a short exposure time (4–8 h). These effects were significantly (p = 0.005) comparable to the nifedipine (NIF) drug group. Similar long-term (21 days) effects on blood pressure were observed in 1,200 mg HM and NIF groups. Angiotensin-converting enzyme (ACE) activity and levels were also reduced in a correlation with blood pressure reduction only in HM1200 and HM800 treated groups. The authors observed no significant effect on blood pressure in groups receiving the 800 mg HM or 1,200 mg unhydrolyzed camel milk (UM). Rats receiving the 10% fructose diet showed significant differences from control rats regarding their blood biochemistry, including TG, TC, blood glucose and insulin levels. Rats in groups NIF, HM1200 and HM800 showed a significant (p < 0.05) reduction in serum glucose, insulin, TG and TC levels toward the baseline level. Research limitations/implications Further mechanistic investigation on the HM antihypertensive activity is highly recommended before suggesting HM as a product to reduce blood pressure. While drug–food interaction between HM and antihypertensive drugs, especially ACE inhibitors, is probable, UM seems not to affect blood pressure or ACE activity and therefore is expected to have no or minimal effects on the activity of other antihypertensive drugs. Investigation of ACE expression from various organs including lungs and leukocytes is highly recommended in future works using sodium dodecyl-sulfate polyacrylamide gel electrophoresis and western blot analysis or reverse transcription polymerase chain reaction. Originality/value No previous studies have measured the antihypertensive activity of milk hydrolysate mediated by the reduction of ACE activity and levels in plasma. Mechanisms involved in attenuating the levels of ACE warrant further investigation.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Bruno Igreja ◽  
Nuno M Pires ◽  
Lyndon C Wright ◽  
Patrío Soares-da-Silva

The sympathetic nervous system can alter blood pressure by modulation of cardiac output, peripheral vascular resistance and renal function. One strategy for controlling sympathetic nerve function is to reduce the biosynthesis of norepinephrine (NE) via inhibition of dopamine β-hydroxylase (DβH; EC 1.14.17.1 ), the enzyme that catalyses the conversion of dopamine (DA) to NE in sympathetic nerves. BIA 5-1058 is a reversible DβH inhibitor that decreases NE levels in peripheral sympathetically innervated tissues slowing down sympathetic nervous system drive, without effect in brain tissues. In freely moving SHR implanted with radio-telemetry transmitters single administration of BIA 5-1058 showed a dose (3, 30 and 100 mg/Kg) and time dependent effect on blood pressure with no significant effect on heart rate (HR) and total activity monitored over a 96-hour period. The maximum reduction on systolic blood pressure (SBP) was -10.8, -21.1 and -35.2 mmHg for 3, 30 and 100 mg/Kg, respectively and the maximum reduction on diastolic blood pressure (DBP) was -9.9, -18.4 and -24.8 mmHg for 3, 30 and 100 mg/Kg, respectively. The antihypertensive effect of BIA 5-1058 (30 mg/Kg) was further evaluated in combination with efficacious doses of well-known antihypertensive drugs, like the ACE inhibitor captopril, the AT1 receptor antagonist losartan, the diuretic hydrochlorothiazide, beta-blocker metoprolol, the alpha-1 receptor antagonist prazosin, and the calcium channel blocker diltiazem. All drugs were administered orally (single dose) in a cross-over design and the effect was monitored for 72 hours. The combination of BIA 5-1058 with any of the tested antihypertensive drugs caused a stronger and prolonged blood pressure decrease than any of the compounds alone.In conclusion, peripheral DβH inhibitors can be used, alone or in combination with others antihypertensive drugs, to reduce blood pressure.


2011 ◽  
Vol 343-344 ◽  
pp. 698-706
Author(s):  
Yu Hao Zhang ◽  
Liang Ma ◽  
Qiang Wang

Hydrolysates of peanut protein from low denatured peanut dregs, which inhibit the angiotensinⅠconverting enzyme (ACE) were prepared by enzymic hydrolysis with Alcalase and N120p that are two proteases available for industrial use. Combination of Alcalase and N120p hydrolyzed peanut proteins most efficiently and the hydrolysates showed the most high activity (IC50=0.548 mg/ml). Sequential ultrafiltration of the hydrolysates with MW cut-off 10, 5 and 1KD resulted in increased activity of each filtrate up to IC50 of 0.255 mg/ml. Sephadex G-15 gel chromatography of the oligopeptides below MW 1KD eluted a peptide fraction of the most potent activity (IC50=0.091 mg/ml). the oligopeptide below MW 1 KD competitively inhibited ACE and it was evaluated for antihypertensive effect in spontaneously hypertensive rats (SHRs) following oral administration. Systolic blood pressure (SBP) significantly decreased after peptide ingestion and higher dose of peanut oligopeptides could not induce occurrence of low blood pressure.


2013 ◽  
Vol 10 (4) ◽  
pp. 38-43
Author(s):  
T E Morozova ◽  
T B Andruschishina ◽  
D G Shmarova

Optimizing pharmacotherapy of arterial hypertension (AH) and varied selection of medicines remains an urgent problem for practitioners. However, despite the large variety of effective antihypertensive drugs, the control of blood pressure levels remains inadequate. Most patients require combined therapy with two or more agents to achieve target blood pressure levels, so the choice of second-line therapy is of particular importance. As adjunctive therapy in patients with uncontrolled hypertension a-blockerscan be used, which, in addition to the antihypertensive effect, have a number of other benefits including improved lipid profile and glucose metabolism, as well as reducing the symptoms of benign prostatic hyperplasia. Urapidil provides a-blocking effect and additionally exhibits the central sympatholytic effect which is mediated by stimulation of serotonin 5HT1A-receptor in the central nervous system. The evidence base suggests that the drug has antihypertensive effect in combination with a favorable metabolic profile, and has a good safety profile as well, and has no disadvantages inherent to a-blockers, in particular, the development of reflex tachycardia.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 651
Author(s):  
Yongchang Su ◽  
Shicheng Chen ◽  
Shuilin Cai ◽  
Shuji Liu ◽  
Nan Pan ◽  
...  

Alcalase, neutral protease, and pepsin were used to hydrolyze the skin of Takifugu flavidus. The T. flavidus hydrolysates (TFHs) with the maximum degree of hydrolysis (DH) and angiotensin-I-converting enzyme (ACE)-inhibitory activity were selected and then ultra-filtered to obtain fractions with components of different molecular weights (MWs) (<1, 1–3, 3–10, 10–50, and >50 kDa). The components with MWs < 1 kDa showed the strongest ACE-inhibitory activity with a half-maximal inhibitory concentration (IC50) of 0.58 mg/mL. Purification and identification using semi-preparative liquid chromatography, Sephadex G-15 gel chromatography, RP-HPLC, and LC–MS/MS yielded one new potential ACE-inhibitory peptide, PPLLFAAL (non-competitive suppression mode; IC50 of 28 μmmol·L−1). Molecular docking and molecular dynamics simulations indicated that the peptides should bind well to ACE and interact with amino acid residues and the zinc ion at the ACE active site. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that PPLLFAAL could significantly decrease the systolic blood pressure (SBP) and diastolic blood pressure (DBP) of SHRs after intravenous administration. These results suggested that PPLLFAAL may have potential applications in functional foods or pharmaceuticals as an antihypertensive agent.


Biotecnia ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Alvaro Montoya-Rodríguez ◽  
Evelyn Isabel Osuna-Gallardo ◽  
Francisco Cabrera-Chávez ◽  
Jorge Milán-Carrillo ◽  
Cuauhtémoc Reyes-Moreno ◽  
...  

Hypertension is considered a risk factor for coronary heart disease, and its prevalence has increased substantially. Inhibition of angiotensin-converting enzyme (ACE-I) is key to lower blood pressure, making it an excellent treatment for hypertension. Corn (Zea mays L.) is an important source of bioactive peptides with potential anti-hypertensive activity related to ACE-I inhibition. These peptides can be obtained through the hydrolysis of corn gluten meal (CGM), as wetmilling by-products. The aim was to evaluate the in vitro and in vivo ACE-I inhibitory activity of blue CGM hydrolysates. Enzymatic digestion in vitro of blue CGM was conducted at different times. Hydrolysis for 360 min significantly increased both soluble protein and antioxidant activity by 4 and 8-fold respectively, the maximum ACE-I inhibition (94.3 %) was observed with 260 min hydrolysate. Mice were treated with the blue CGM hydrolysate (260 min), captopril or PBS to test the bioavailability in vivo. The CGM hydrolysate was detected in serum after 5 and up to 30 min after ingestion, showing the maximum ACE-I inhibitory capacity (59 %) during the first 15 min. Overall, this work showed that the blue CGM hydrolysate could serve as a functional food ingredient with antihypertensive effect due to its blood pressure-lowering peptides.RESUMENLa hipertensión es factor de riesgo en enfermedades coronarias, y su prevalencia ha aumentado sustancialmente. La inhibición de enzima convertidora de angiotensina (ECA) es clave para disminuir presión arterial, y excelente tratamiento para hipertensión. El maíz (Zea mays L.) es fuente de péptidos bioactivos con actividad antihipertensiva por inhibición de ECA. Péptidos pueden obtenerse por hidrólisis de harina de gluten de maíz (HGM), como subproducto de molienda húmeda. El objetivo fue evaluar in vitro e in vivo actividad inhibitoria de ECA en hidrolizados de HGM azul. La digestión enzimática in vitro de HGM fue conducida a diferentes tiempos. La hidrólisis por 360 min aumento significativamente proteína soluble y actividad antioxidante de 4 y 8 veces, respectivamente; la máxima inhibición de ECA (94.3 %) fue observada a 260 minutos del hidrolizado. Ratones fueron tratados con HGM hidrolizado (260 minutos), captopril o PBS para evaluar biodisponibilidad in vivo. Después de la ingestión, HGM hidrolizado fue detectado en suero en 5 hasta 30 minutos, mostrando máxima inhibición de ECA (59 %) durante los primeros 15 minutos. En general, este trabajo mostró que hidrolizado de HGM podría servir como ingrediente funcional en alimentos con efecto antihipertensivo debido a péptidos reductores de presión arterial.


Sign in / Sign up

Export Citation Format

Share Document