scholarly journals Novel Substrates for Kinases Involved in the Biosynthesis of Inositol Pyrophosphates and Their Enhancement of ATPase Activity of a Kinase

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3601
Author(s):  
Raja Mohanrao ◽  
Ruth Manorama ◽  
Shubhra Ganguli ◽  
Mithun C. Madhusudhanan ◽  
Rashna Bhandari ◽  
...  

IP6K and PPIP5K are two kinases involved in the synthesis of inositol pyrophosphates. Synthetic analogs or mimics are necessary to understand the substrate specificity of these enzymes and to find molecules that can alter inositol pyrophosphate synthesis. In this context, we synthesized four scyllo-inositol polyphosphates—scyllo-IP5, scyllo-IP6, scyllo-IP7 and Bz-scyllo-IP5—from myo-inositol and studied their activity as substrates for mouse IP6K1 and the catalytic domain of VIP1, the budding yeast variant of PPIP5K. We incubated these scyllo-inositol polyphosphates with these kinases and ATP as the phosphate donor. We tracked enzyme activity by measuring the amount of radiolabeled scyllo-inositol pyrophosphate product formed and the amount of ATP consumed. All scyllo-inositol polyphosphates are substrates for both the kinases but they are weaker than the corresponding myo-inositol phosphate. Our study reveals the importance of axial-hydroxyl/phosphate for IP6K1 substrate recognition. We found that all these derivatives enhance the ATPase activity of VIP1. We found very weak ligand-induced ATPase activity for IP6K1. Benzoyl-scyllo-IP5 was the most potent ligand to induce IP6K1 ATPase activity despite being a weak substrate. This compound could have potential as a competitive inhibitor.

Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2789 ◽  
Author(s):  
Caitlin Cridland ◽  
Glenda Gillaspy

The ability of an organism to maintain homeostasis in changing conditions is crucial for growth and survival. Eukaryotes have developed complex signaling pathways to adapt to a readily changing environment, including the inositol phosphate (InsP) signaling pathway. In plants and humans the pyrophosphorylated inositol molecules, inositol pyrophosphates (PP-InsPs), have been implicated in phosphate and energy sensing. PP-InsPs are synthesized from the phosphorylation of InsP6, the most abundant InsP. The plant PP-InsP synthesis pathway is similar but distinct from that of the human, which may reflect differences in how molecules such as Ins(1,4,5)P3 and InsP6 function in plants vs. animals. In addition, PP-InsPs can potentially interact with several major signaling proteins in plants, suggesting PP-InsPs play unique signaling roles via binding to protein partners. In this review, we will compare the biosynthesis and role of PP-InsPs in animals and plants, focusing on three central themes: InsP6 synthesis pathways, synthesis and regulation of the PP-InsPs, and function of a specific protein domain called the Syg1, Pho1, Xpr1 (SPX ) domain in binding PP-InsPs and regulating inorganic phosphate (Pi) sensing. This review will provide novel insights into the biosynthetic pathway and bioactivity of these key signaling molecules in plant and human systems.


2020 ◽  
Vol 477 (14) ◽  
pp. 2621-2638 ◽  
Author(s):  
Hayley Whitfield ◽  
Gaye White ◽  
Colleen Sprigg ◽  
Andrew M. Riley ◽  
Barry V.L. Potter ◽  
...  

Inositol polyphosphates are ubiquitous molecular signals in metazoans, as are their pyrophosphorylated derivatives that bear a so-called ‘high-energy’ phosphoanhydride bond. A structural rationale is provided for the ability of Arabidopsis inositol tris/tetrakisphosphate kinase 1 to discriminate between symmetric and enantiomeric substrates in the production of diverse symmetric and asymmetric myo-inositol phosphate and diphospho-myo-inositol phosphate (inositol pyrophosphate) products. Simple tools are applied to chromatographic resolution and detection of known and novel diphosphoinositol phosphates without resort to radiolabeling approaches. It is shown that inositol tris/tetrakisphosphate kinase 1 and inositol pentakisphosphate 2-kinase comprise a reversible metabolic cassette converting Ins(3,4,5,6)P4 into 5-InsP7 and back in a nucleotide-dependent manner. Thus, inositol tris/tetrakisphosphate kinase 1 is a nexus of bioenergetics status and inositol polyphosphate/diphosphoinositol phosphate metabolism. As such, it commands a role in plants that evolution has assigned to a different class of enzyme in mammalian cells. The findings and the methods described will enable a full appraisal of the role of diphosphoinositol phosphates in plants and particularly the relative contribution of reversible inositol phosphate hydroxykinase and inositol phosphate phosphokinase activities to plant physiology.


1971 ◽  
Vol 17 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Philip J Garry

Abstract Dibucaine, used as a differential inhibitor with acetyl-, propionyl-, and butyrylthiocholine as substrate, clearly identified the "usual" and "atypical" serum cholinesterases. Succinylcholine was also used successfully as a differential inhibitor with butyrylthiocholine as substrate. Sodium fluoride, used as a differential inhibitor, gave conflicting results, depending on whether Tris or phosphate buffer was used in the assay. Mono- and divalent cations (NaCl, KCl, MgCl2, CaCl2, and BaCl2) activated the "usual" and inhibited the "atypical" enzyme at low concentrations. The "usual" enzyme had the same activity in 0.05 mol of Tris or phosphate buffer per liter, while the heterozygous and "atypical" enzymes showed 12 and 42% inhibition, respectively, when assayed in the phosphate buffer. Kinetic studies showed the phosphate acted as a competitive inhibitor of "atypical" enzyme. Km values, determined for "usual" and "atypical" enzymes, were 0.057 and 0.226 mmol/liter, respectively, with butyrylthiocholine as substrate.


1997 ◽  
Vol 200 (22) ◽  
pp. 2881-2892 ◽  
Author(s):  
P Leong ◽  
D Manahan

Early stages of animal development have high mass-specific rates of metabolism. The biochemical processes that establish metabolic rate and how these processes change during development are not understood. In this study, changes in Na+/K+-ATPase activity (the sodium pump) and rate of oxygen consumption were measured during embryonic and early larval development for two species of sea urchin, Strongylocentrotus purpuratus and Lytechinus pictus. Total (in vitro) Na+/K+-ATPase activity increased during development and could potentially account for up to 77 % of larval oxygen consumption in Strongylocentrotus purpuratus (pluteus stage) and 80 % in Lytechinus pictus (prism stage). The critical issue was addressed of what percentage of total enzyme activity is physiologically active in living embryos and larvae and thus what percentage of metabolism is established by the activity of the sodium pump during development. Early developmental stages of sea urchins are ideal for understanding the in vivo metabolic importance of Na+/K+-ATPase because of their small size and high permeability to radioactive tracers (86Rb+) added to sea water. A comparison of total and in vivo Na+/K+-ATPase activities revealed that approximately half of the total activity was utilized in vivo. The remainder represented a functionally active reserve that was subject to regulation, as verified by stimulation of in vivo Na+/K+-ATPase activity in the presence of the ionophore monensin. In the presence of monensin, in vivo Na+/K+-ATPase activities in embryos of S. purpuratus increased to 94 % of the maximum enzyme activity measured in vitro. Stimulation of in vivo Na+/K+-ATPase activity was also observed in the presence of dissolved alanine, presumably due to the requirement to remove the additional intracellular Na+ that was cotransported with alanine from sea water. The metabolic cost of maintaining the ionic balance was found to be high, with this process alone accounting for 40 % of the metabolic rate of sea urchin larvae (based on the measured fraction of total Na+/K+-ATPase that is physiologically active in larvae of S. purpuratus). Ontogenetic changes in pump activity and environmentally induced regulation of reserve Na+/K+-ATPase activity are important factors that determine a major proportion of the metabolic costs of sea urchin development.


1999 ◽  
Vol 276 (2) ◽  
pp. H651-H657 ◽  
Author(s):  
Francisco Pérez-Vizcaíno ◽  
Angel Cogolludo ◽  
Juan Tamargo

Na+-K+-ATPase plays a major role in regulating membrane potential and vascular tone. We analyzed the modulation by norepinephrine (NE), endothelin-1 (ET-1), and phorbol 12-myristate 13-acetate (PMA) of Na+-K+-ATPase-induced cytoplasmic free Ca2+concentration ([Ca2+]i) reduction and relaxation in isolated endothelium-denuded piglet mesenteric arteries. KCl (0.2–8.8 mM)-induced [Ca2+]ireduction and relaxation in arteries incubated in K+-free solution were used as functional indicators of Na+-K+-ATPase activity. KCl-induced relaxations after exposure to K+-free solution were associated with a reduction in [Ca2+]i, as measured by fura 2 fluorescence. However, KCl reduced [Ca2+]ibelow resting values, whereas force was reduced to near resting values. NE, ET-1, and PMA inhibited the relaxant effects of KCl, and this effect was attenuated by the protein kinase C inhibitor staurosporine but not by the phospholipase A2inhibitor quinacrine. However, ET-1 and PMA potentiated the [Ca2+]i-reducing effect of KCl. In conclusion, ET-1, PMA, and NE are functional inhibitors of Na+-K+-ATPase activity in endothelium-denuded piglet mesenteric arteries, even when the direct effect on the enzyme activity may be stimulatory rather than inhibitory. This can be explained because ET-1, PMA, and NE induce Ca2+ sensitization for smooth muscle contraction, and therefore relaxations do not parallel the reductions in [Ca2+]iafter the activation of Na+-K+-ATPase.


1972 ◽  
Vol 50 (2) ◽  
pp. 158-165 ◽  
Author(s):  
R. L. Howden ◽  
H. Lees ◽  
Isamu Suzuki

Phosphoenolpyruvate (PEP) carboxylase (orthophosphate:oxalacetate carboxy-lyase (phosphorylating), EC 4.1.1.31) was purified 19-fold from Thiobacillus thiooxidans. The level of enzyme activity was dependent on culture age. No enzyme activity could be obtained from frozen cells.The pH optimum of the enzyme was determined to be around 8.0. Apparent Michaelis constants were determined for the substrates:phosphoenolpyruvate (1.4, 1.5 mM), bicarbonate (0.4, 1.1 mM), and magnesium (1.1, 0.8 mM) at pH 7.0 and 8.0, respectively. Acetyl-CoA was found to be a powerful activator of this enzyme, with the degree of activation increasing with decreasing pH. The concentration of acetyl-CoA to obtain half-maximal activation, however, remained fairly constant and low, namely 1.2 and 1.0 μM at pH 7.0 and 8.0, respectively. L-Aspartate and L-malate were strong inhibitors of enzyme activity. In the presence of aspartate at pH 7.0 the double reciprocal activity plots for PEP became nonlinear, a characteristic of negative cooperativity. These plots became linear with the addition of acetyl-CoA with aspartate now acting as a noncompetitive inhibitor with respect to PEP. At pH 8.0, the same plots were linear with aspartate acting as a competitive inhibitor of PEP. All the other effectors of PEP carboxylase from Salmonella typhimurium and Escherichia coli were found to be ineffective towards the enzyme from T. thiooxidans.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 605 ◽  
Author(s):  
Nardin Nano ◽  
Francisca Ugwu ◽  
Thiago V. Seraphim ◽  
Tangzhi Li ◽  
Gina Azer ◽  
...  

RUVBL1 and RUVBL2 are highly conserved ATPases that belong to the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various complexes and cellular processes, several of which are closely linked to oncogenesis. The proteins were implicated in DNA damage signaling and repair, chromatin remodeling, telomerase activity, and in modulating the transcriptional activities of proto-oncogenes such as c-Myc and β-catenin. Moreover, both proteins were found to be overexpressed in several different types of cancers such as breast, lung, kidney, bladder, and leukemia. Given their various roles and strong involvement in carcinogenesis, the RUVBL proteins are considered to be novel targets for the discovery and development of therapeutic cancer drugs. Here, we describe the identification of sorafenib as a novel inhibitor of the ATPase activity of human RUVBL2. Enzyme kinetics and surface plasmon resonance experiments revealed that sorafenib is a weak, mixed non-competitive inhibitor of the protein’s ATPase activity. Size exclusion chromatography and small angle X-ray scattering data indicated that the interaction of sorafenib with RUVBL2 does not cause a significant effect on the solution conformation of the protein; however, the data suggested that the effect of sorafenib on RUVBL2 activity is mediated by the insertion domain in the protein. Sorafenib also inhibited the ATPase activity of the RUVBL1/2 complex. Hence, we propose that sorafenib could be further optimized to be a potent inhibitor of the RUVBL proteins.


1980 ◽  
Vol 238 (5) ◽  
pp. G424-G428
Author(s):  
H. Schiffl ◽  
U. Binswanger

Calcium ATPase, an enzyme involved in intestinal calcium transport, was measured in homogenates of duodenal mucosal scrapings of normal and uremic rats. The effects of calcium deprivation and treatment with 1 alpha,25-dihydroxycholecalciferol [1,25-(OH)2D3] were investigated as well. Uremia decreased the enzyme activity and impaired the rise after calcium deprivation as observed in intact rats. The 1,25-(OH)2D3 treatment increased the enzyme activity in uremic animals and resulted in an identical response to calcium deprivation as observed in intact rats; parathyroidectomy abolished this effect. A striking correlation between everted duodenal gut sac calcium transport and calcium ATPase activity could be demonstrated for all groups of rats studied. It is concluded that the calcium ATPase activity is linked to the production of 1,25-(OH)2D3 as well as to an additional factor, probably parathyroid hormone. The close relationship between enzyme activity and in vitro calcium transport, even during constant physiological supplementation with 1,25-(OH)2D3, suggests an autonomous role of the calcium ATPase activity for mediation of calcium transport in the duodenum in addition to the well-known mechanisms related to vitamin D and its metabolites.


1986 ◽  
Vol 251 (2) ◽  
pp. F199-F207
Author(s):  
S. K. Mujais ◽  
M. A. Chekal ◽  
J. P. Hayslett ◽  
A. I. Katz

The purpose of this study was to characterize the alterations in collecting tubule Na+-K+-ATPase activity produced by sustained increments in dietary potassium in the rat and to evaluate the role of aldosterone in their generation. In adrenal-intact animals, feeding a high-potassium diet (10-fold that of control) or administration of a high physiological dose of aldosterone (5 micrograms X 100 g-1 X day-1), which simulates the delivery rate of this hormone during potassium loading (both for 7 days), caused marked increments in Na+-K+-ATPase activity in the cortical collecting tubule (CCT) but had no effect on the enzyme in the inner stripe of the medullary collecting tubule (MCT). A significant increase in enzyme activity was also observed after smaller dietary potassium increments (2.5 and 5 times the control) and after 4 (but not 2) days of dietary potassium load. In adrenalectomized rats provided with physiological replacement doses of corticosterone and aldosterone (0.8 micrograms X 100 g-1 X day-1), Na+-K+-ATPase activity in both CCT and MCT was similar to that of adrenal-intact controls but remained unchanged after 7 days on the potassium-enriched (10-fold) diet. In contrast, adrenalectomized animals receiving the high physiological dose of aldosterone displayed an increase in Na+-K+-ATPase activity of CCT comparable with that of adrenal-intact animals, whereas the enzyme activity in the MCT was unaffected. In conclusion, 1) following chronic potassium loading Na+-K+-ATPase activity increases significantly in the CCT with no change in its activity in the inner stripe of the MCT.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document