scholarly journals Development and Characterization of Novel Composite Films Based on Soy Protein Isolate and Oilseed Flours

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3738
Author(s):  
Magdalena Mikus ◽  
Sabina Galus ◽  
Agnieszka Ciurzyńska ◽  
Monika Janowicz

The possibility of using oilseed flours as a waste source for film-forming materials with a combination of soy protein isolate in preparation of edible films was evaluated. Physical, mechanical and barrier properties were determined as a function of the oilseed type: hemp, evening primrose, flax, pumpkin, sesame and sunflower. It was observed that the addition of oilseed flours increased the refraction and thus the opacity of the obtained films from 1.27 to 9.57 A mm−1. Depending on the type of flours used, the edible films took on various colors. Lightness (L*) was lowest for the evening primrose film (L* = 34.91) and highest for the soy protein film (L* = 91.84). Parameter a* was lowest for the sunflower film (a* = −5.13) and highest for the flax film (a* = 13.62). Edible films made of pumpkin seed flour had the highest value of the b* color parameter (b* = 34.40), while films made of evening primrose flour had the lowest value (b* = 1.35). All analyzed films had relatively low mechanical resistance, with tensile strength from 0.60 to 3.09 MPa. Films made of flour containing the highest amount of protein, pumpkin and sesame, had the highest water vapor permeability, 2.41 and 2.70 × 10−9 g·m−1 s−1 Pa−1, respectively. All the edible films obtained had high water swelling values from 131.10 to 362.16%, and the microstructure of the films changed after adding the flour, from homogeneous and smooth to rough. All blended soy protein isolate–oilseed flour films showed lower thermal stability which was better observed at the first and second stages of thermogravimetric analysis when degradation occurred at lower temperatures. The oilseed flours blended with soy protein isolate show the possibility of using them in the development of biodegradable films which can find practical application in the food industry.

2021 ◽  
Author(s):  
Aritra Sinha

Abstract This study focuses on the development and characterization of a novel biodegradable edible film made from soy protein isolate enriched with alginate-glycyrrhizin nanogel(GL-ALG NGP). Nanoparticles of particle sizes below 100 nm were synthesized using glycyrrhizin(GL), calcium chloride and, sodium alginate(SA) through the reverse micro-emulsion/internal gelation method. Soy protein isolate (SPI) based films were prepared by a simple casting procedure by incorporating GL-ALG NGPs in SPI solution in different ratios of (SPI: GL-ALG NGPs) 5:0, 5:1, 2:1, 1:1, and 1:1.5. Glycerol was used as a plasticizer in the film-forming solution. The effects of the proportions of GL-ALG NGPs addition on the thickness, mechanical properties, water vapor permeability, UV barrier performance, antioxidant activity, and antimicrobial property of the obtained films were studied. The GL-ALG NGPs were analyzed using Dynamic Light Scattering. Microstructural studies of obtained films were performed using Scanning Electron microscopy. Results show incorporation of GL-ALG NGPs in soy protein-alginate complex produced smoother, compact, and more continuous matrices as compared to pure SPI films. The test results indicated that blending of SPI with GL-ALG NGPs in the ratio 1:1 increased tensile strength of obtained films by 185%, reduced water solubility to 23.59%, and water vapor permeability to 0.3087 g-mm/m2-d-kPa. Obtained films exhibited good UV barrier performance, antioxidant activity and inhibited the growth of E. coli, S. aureus, Enterobacter sakazakii, and A. niger. So, soy protein isolate-based films enriched with GL-ALG NGPs are active biodegradable edible films that can be used to extend the shelf life of food products.


2010 ◽  
Vol 150-151 ◽  
pp. 1396-1399 ◽  
Author(s):  
Xi Hong Li ◽  
Kuan Guo ◽  
Xiao Yan Zhao

This paper explains and demonstrates the effects of beeswax on functional and structural properties of soy protein isolate films, containing different glycerol. The results showed that percentage elongation at break, water vapor permeability, and transparency of soy protein isolate films decreased when the beeswax content increased, but tensile strength and oxygen permeability increased. The higher the glycerol content, the higher the film water vapor permeability, oxygen permeability, and transparency. The results of differential scanning calorimetry and Fourier transform infrared spectroscopy suggested that beeswax cross-linked with soy protein isolate molecules via connecting with glycerol, composed the film matrix.


2008 ◽  
Vol 14 (2) ◽  
pp. 119-125 ◽  
Author(s):  
A.N. Mauri ◽  
M.C. Añón

Mechanical, physical, and barrier properties of films obtained from soy protein isolate solutions at different pH were studied and correlated with the structural properties and the microstructure of films. Films obtained at pH 2 and 11, which had denser microstructures and a higher amount of disulfide bonds, showed a higher tensile strength — of about 1.05 MPa — and a higher Young's modulus — of at least 0.15MPa — than the one at pH 8. However, films formed at alkaline pH (8 and 11) exhibited a higher deformation than films at pH 2 — by about 70%. The presence of at least a protein fraction in native state allowed macromolecules to unfold during the mechanical test, reaching greater deformation before breaking. Acidic films exhibited higher water vapor permeability — of about 7 × 10-11 g/m s Pa — and water content — of about 1.5% — and a lower glass transition temperature — of at least 15 °C — than basic ones, due to their higher hydrophilic nature.


2010 ◽  
Vol 96 ◽  
pp. 75-79 ◽  
Author(s):  
Jun Feng Su ◽  
Wen Long Xia ◽  
Wen Li ◽  
Ke Man Jin

The aim of the present work was to investigate the moisture sensitivity of soy protein isolate (SPI) films blending with poly (vinyl alcohol) (PVA) plasticized by glycerol. Water vapor permeability (WVP) was measured based on the contents of PVA and glycerol in films. WVP values of various SPI/PVA films with/without glycerol were in the range of 8.25 and 10.9 g mm/m2 h kPa. The results showed that WVP values decreased with the increasing content of PVA. Moreover, XRD tests confirmed that the glycerol would insert into the macromolecular blending structure and destroy the crystalline of blends, and the crosslinkage between glycerol molecules and SPI reduced the interstitial spaces in protein matrix, thus allowing for decreasing diffusion rate of water molecules through the films.


Author(s):  
Yuanyuan Liu ◽  
Lina Xu ◽  
Rui Li ◽  
Huangjiang Zhang ◽  
Wenhui Cao ◽  
...  

AbstractAntimicrobial films were prepared by incorporating nano-titanium dioxide (TiO2) modified by silane into soy protein isolate (SPI) films. The effects of different concentrations of modified nano-TiO2 (TiO2-NM) on the physical properties, antimicrobial properties, and microstructure of the SPI-based films were investigated. Attenuated total reflectance Fourier-transform infrared spectroscopy indicated that the interaction between the SPI and TiO2-NM was via hydrogen bonds. Scanning electron microscopy and atomic force microscopy both showed that the microstructure of SPI-based films with TiO2-NM was compact. Moreover, as the content of TiO2-NM increased from 0 to 1.5 g/100 mL, the water vapor permeability and oxygen permeability were decreased from 5.43 to 4.62 g· mm/m2d· kPa and 0.470 to 0.110 g· cm−2· d−1, respectively. An increase from 6.67 MPa to 14.56 MPa in tensile strength and a decrease from 36.53% to 27.62% in elongation at break indicate the optimal mechanical properties of all groups. TiO2-NM films had excellent UV barrier properties, with a whiter surface with increasing TiO2-NM content. In addition, the SPI-based films with TiO2-NM showed antimicrobial activity, as evidenced by an inhibitory zone increasing from 0 to 27.34 mm. Therefore, TiO2-NM can be used as an antimicrobial agent in packaging films.


2012 ◽  
Vol 503-504 ◽  
pp. 446-449 ◽  
Author(s):  
Chun Xia Sui ◽  
Lian Zhou Jiang ◽  
Guo Ping Yu

The objective of this research was to investigate the effect of pH(7.0, 8.0, 9.0, 10.0) on the properties of soy protein isolate (SPI)/guar gum (GG)composite films casted with 0.2 %(w/v)guar gum polysaccharide, 5.0 %(w/v)SPI, 1.5 %(w/v)glycerol plasticizer, and 4:1(v/v) mixture of distilled water and anhydrous alcohol. Composite membranes from different pH conditions were evaluated from following aspects: tensile strength (TS), elongation at break (EB), water vapor permeability (WVP), water solubility (WS) and surface hydrophobicity(SH)


Author(s):  
Isabela dos Santos Paglione ◽  
Marcella Vitoria Galindo ◽  
Karen Cristine de Souza ◽  
Fabio Yamashita ◽  
Carlos Raimundo Ferreira Grosso, Lyssa Setsuko Sakanaka, Marianne Ayumi Shirai

The soy protein isolate (SPI) is a biopolymer highlighted as a raw material for producing films and demands the investigation of the processing conditions that make it possible to obtain a film with adequate functional properties. The objective of this work was to evaluate the effect of the pH and concentration of SPI on the mechanical properties, water vapor permeability, solubility, and color of the SPI films produced by casting using a central composite rotational design (CCRD). In general, the films presented a yellow coloration with a continuous aspect, good handling, and no apparent glycerol migration. The linear effect of pH positively influenced the tensile strength (TS) and elongation at break (ELO) of the film (p <0.05) but negatively influence the solubility (SOL) and color parameter L* for which we obtained lower values ​​of SOL and L* at a high pH. This possibly occurred because of the denaturation of the soy proteins at an alkaline pH, far from the isoelectric point, resulting in their unfolding and solubilization which facilitated the interaction between the chains, forming a more compact structure. Considering the optimization by the desirability function, to obtain a film with high TS and ELO and low SOL, it is necessary to use 7.56 g/100 g of SPI film-forming solution and to adjust the film-producing solution to pH 10.54.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 575-589
Author(s):  
Xin Zhou ◽  
Qingyin Dai ◽  
Xi Huang ◽  
Zhiyong Qin

Abstract The mangosteen peel extract (MPE) was used to obtain soy protein isolate (SPI) films. The results show that MPE exhibited a high content of total phenolics and antioxidant activity. Moreover, the MPE can enhance the antibacterial–antioxidant properties, UV-visible light barrier properties, and water-resistant properties of the SPI films. The presence of MPE resulted in an increase in water vapor permeability and hydrophobicity. The extract addition also reduced the film’s crystallinity along with a decrease in the mechanical property and lowering of the maximum degradation temperature. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the polyphenols in MPE could interact with SPI through hydrogen bonds and hydrophobic interactions, and the addition of MPE changed the secondary structure of SPI with a decrease in β-sheets and an increase in β-turns and random coils. Scanning electron microscopy showed that all the films exhibited smooth and homogenous morphology on the surface and on some layers through cross-sectional images. Our results suggested that the MPE would be a promising ingredient to make SPI films used as an active packaging material.


Sign in / Sign up

Export Citation Format

Share Document