scholarly journals Label-Free Electrochemical Sensor Based on Manganese Doped Titanium Dioxide Nanoparticles for Myoglobin Detection: Biomarker for Acute Myocardial Infarction

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4252
Author(s):  
Adel Al Fatease ◽  
Mazharul Haque ◽  
Ahmad Umar ◽  
Shafeeque G. Ansari ◽  
Yahya Alhamhoom ◽  
...  

A label free electrochemical sensor based on pure titanium oxide and manganese (Mn)-doped titanium oxide (TiO2) nanoparticles are fabricated and characterized for the sensitive detection of myoglobin (Mb) levels to analyze the cardiovascular infarction. Pristine and Mn-doped TiO2 nanoparticles were synthesized via the sol-gel method and characterized in order to understand their structure, morphologies, composition and optical properties. The structural properties revealed that the pure- and doped-TiO2 nanoparticles possess different TiO2 planes. FTIR studies confirm the formation of metal oxide nanoparticles by exhibiting a well-defined peak in the range of 600–650 cm−1. The values of the optical band gap, estimated from UV-Vis spectroscopy, are decreased for the Mn-doped TiO2 nanoparticles. UV-Vis spectra in the presence of myoglobin (Mb) indicated interaction between the TiO2 nanoparticles and myoglobin. The SPE electrodes were then fabricated by printing powder film over the working electrode and tested for label-free electrochemical detection of myoglobin (Mb) in the concentration range of 0–15 nM Mb. The fabricated electrochemical sensor exhibited a high sensitivity of 100.40 μA-cm−2/nM with a lowest detection limit of 0.013 nM (0.22 ng/mL) and a response time of ≤10 ms for sample S3. An interference study with cyt-c and Human Serum Albumin (HSA) of the sensors show the selective response towards Mb in 1:1 mixture.

2015 ◽  
Vol 622 ◽  
pp. 37-47 ◽  
Author(s):  
Anand Kumar Tripathi ◽  
Mohan Chandra Mathpal ◽  
Promod Kumar ◽  
Manish Kumar Singh ◽  
M.A.G. Soler ◽  
...  

2017 ◽  
Vol 13 (3) ◽  
pp. 6065-6075
Author(s):  
Manikandan Kandasamy

  In this research work, the effect of Tungsten-doping on the crystal structure, morphology and antimicrobial of titanium dioxide nanoparticles were studied. The pure and different weight % of tungsten doped TiO2 nanoparticles were synthesized by sol–gel method and calcinated at 600°C for 5 hours. The synthesised products have been characterized by X-ray Diffraction studies (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Elemental analysis (EDXA), Ultra Violet Visible Spectroscopy (UV-Vis), Photoluminescence Spectra (PL), High Resolution Transmission Spectroscopy (HRTEM) and Fourier Transform Infra Red Spectroscopy (FT-IR). XRD pattern of pure TiO2 and 1 weight % W-doped TiO2nanoparticles confirms the anatase structure and increase in the W-doping changes the phase of TiO2 to rutile. Average crystallite size of synthesized nanoparticles was determined using the Debye–Scherrer formula. The crystallite size obtained for pure TiO2 is in the range from 29 nm to 39 nm and W-doped TiO2 is varied from 28 to 34 nm. The SEM images show the agglomerated particles of spherical-like morphology. Optical property and direct bandgap of pure and W-doped TiO2nanoparticles also further characterised by UV–Vis Spectroscopy. The images of HRTEM clearly confirm that particles present in the W-doped TiO2 powdered sample is nanosized particles. The Kirby Bauer Agar Well Diffusion Assay  method was employed to explore antimicrobial activity of nanosized pure and W-doped TiO2 colloidal suspension against the test microorganisms two Gram positive bacteria(Staphylococcus aureus, Bacillus subtilis),two Gram negative Bacteria(Escherichia coli, Pseudomonas aeruginosa),and two fungi(Candida albicans, Aspergillus niger). It shows that the W- doped TiO2 nanoparticles inhibited the multiplication and growth of the above mentioned test bacteria and fungi. Antimicrobial activity was found against all tested microorganisms which confirmed that W-doped TiO2 nanoparticles possess high antimicrobial activity compared to pure TiO2 nanoparticles.   


2020 ◽  
Vol 8 (6) ◽  
pp. 104543 ◽  
Author(s):  
Ailton J. Moreira ◽  
João O.D. Malafatti ◽  
Tania R. Giraldi ◽  
Elaine C. Paris ◽  
Ernesto C. Pereira ◽  
...  

2017 ◽  
Vol 247 ◽  
pp. 858-867 ◽  
Author(s):  
Nagaraj P. Shetti ◽  
Deepti S. Nayak ◽  
Shweta J. Malode ◽  
Raviraj M. Kulkarni

Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3916 ◽  
Author(s):  
Muhammad Arslan Ahmad ◽  
Yang Yuesuo ◽  
Qiang Ao ◽  
Muhammad Adeel ◽  
Zhang Yan Hui ◽  
...  

Nitrogen-doped and undoped titanium dioxide nanoparticles were successfully fabricated by simple chemical method and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and transmission electron microscopy (TEM) techniques. The reduction in crystalline size of TiO2 nanoparticles (from 20–25 nm to 10–15 nm) was observed by TEM after doping with N. Antibacterial, antifungal, antioxidant, antidiabetic, protein kinase inhibition and cytotoxic properties were assessed in vitro to compare the therapeutic potential of both kinds of TiO2 nanoparticles. All biological activities depicted significant enhancement as a result of addition of N as doping agent to TiO2 nanoparticles. Klebsiella pneumoniae has been illuminated to be the most susceptible bacterial strain out of various Gram-positive and Gram-negative isolates of bacteria used in this study. Good fungicidal activity has been revealed against Aspergillus flavus. 38.2% of antidiabetic activity and 80% of cytotoxicity has been elucidated by N-doped TiO2 nanoparticles towards alpha-amylase enzyme and Artemia salina (brine shrimps), respectively. Moreover, notable protein kinase inhibition against Streptomyces and antioxidant effect including reducing power and % inhibition of DPPH has been demonstrated. This investigation unveils the more effective nature of N-doped TiO2 nanoparticles in comparison to undoped TiO2 nanoparticles indicated by various biological tests. Hence, N-doped TiO2 nanoparticles have more potential to be employed in biomedicine for the cure of numerous infections.


Author(s):  
Jutarat Kwakkaew ◽  
Matthana Khangkhamano ◽  
Rungrote Kokoo ◽  
Weerachai Sangchay

TiO2-based nanomaterials have been extensively synthesized and used in a wide range of photocatalytic applications. The photocatalytic oxidation process, however, is only activated by irradiation with ultraviolet (UV) light which limits its indoor applications. Herein, to improve such limitations, N/Li2MoO4-doped TiO2 nanoparticles were prepared via sol-gel method. Li2MoO4 concentration was varied. The catalysts were characterized by XRD, XPS, FE-SEM, and UV-Vis spectroscopy. As-synthesized N/Li2MoO4-doped TiO2 catalysts exhibited their crystal sizes of as fine as 20 nm in diameter whereas that of the pure TiO2 was about 35 nm. The absorption ranges of the N/ Li2MoO4-doped catalysts were relocated from UV region toward visible light region. The catalyst with 1 mol% Li2MoO4 offered the highest degradation rate of methylene blue (MB) solution upon visible light irradiation. Its fine crystal size, narrow band gap energy (2.82 eV), high defect concentration, and strong light absorption in visible region are responsible for the enhanced photocatalytic activity of the 1 mol% Li2MoO4.


2021 ◽  
Vol 21 (4) ◽  
pp. 882
Author(s):  
Muhamad Imam Muslim ◽  
Rian Kurniawan ◽  
Mokhammad Fajar Pradipta ◽  
Wega Trisunaryanti ◽  
Akhmad Syoufian

The effects of dopant content and calcination temperature on Mn-doped TiO2-ZrO2 structure and properties were successfully investigated. Composite of Mn-doped titania-zirconia was synthesized by sol-gel method. Titanium(IV) isopropoxide was used as the precursor of TiO2, while zirconiapowder was used as another semiconductor. MnCl2∙4H2O was used as the source of dopant in this study. Various amounts of manganese were incorporated into TiO2-ZrO2 and calcination was performed at temperatures of 500, 700 and 900 °C. Synthesized composites were characterized by Fourier-transform infrared spectroscopy (FTIR), specular reflectance UV-Vis spectroscopy (SR UV-Vis), X-ray diffraction method (XRD) and scanning electron microscopy equipped with X-ray energy dispersive spectroscopy (SEM-EDX). The results showed that Mn-doped TiO2-ZrO2 with the lowest bandgap (2.78 eV) was achieved with 5% of Mn dopant and calcined at 900 °C, while Mn-doped TiO2-ZrO2 with the highest bandgap (3.12 eV) was achieved with 1% of Mn dopant content calcined at 500 °C.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1847 ◽  
Author(s):  
Chrysi Kapridaki ◽  
Nikolaos Xynidis ◽  
Eleftheria Vazgiouraki ◽  
Nikolaos Kallithrakas-Kontos ◽  
Pagona Maravelaki-Kalaitzaki

Iron-doped TiO2 nanoparticles, ranging in Fe concentrations from 0.05 up to 1.00% w/w, were synthesized through a simple sol-gel method. Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Ultraviolet-Visible (UV-Vis) spectroscopy, nitrogen adsorption−desorption isotherms, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure spectroscopy (XANES) were used to characterize the synthesized nanoparticles. The characterization of the Fe-doped TiO2 nanoparticles revealed the predominant presence of anatase crystalline form, as well as the incorporation of the Fe3+ ions into the crystal lattice of TiO2. The photocatalytic assessment of the Fe-doped TiO2 nanoparticles indicated that the low iron doping titania (0.05 and 0.10% w/w) have a positive effect on the photocatalytic degradation of Methyl Orange under visible radiation. Moreover, FTIR monitoring of calcium hydroxide pastes enriched with low Fe-doped TiO2 revealed enhancement of carbonation at both early and later stages. Improved photocatalytic performance and increased lime carbonation, observed in lime coatings with low Fe-doped TiO2 admixtures, established them as invaluable contributors to the protection of the built environment.


Sign in / Sign up

Export Citation Format

Share Document