scholarly journals Free-Standing, Flexible Nanofeatured Polymeric Films Prepared by Spin-Coating and Anodic Polymerization as Electrodes for Supercapacitors

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4345
Author(s):  
Guillem Ruano ◽  
Brenda G. Molina ◽  
Juan Torras ◽  
Carlos Alemán

Flexible and self-standing multilayered films made of nanoperforated poly(lactic acid) (PLA) layers separated by anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) conducting layers have been prepared and used as electrodes for supercapacitors. The influence of the external layer has been evaluated by comparing the charge storage capacity of four- and five-layered films in which the external layer is made of PEDOT (PLA/PEDOT/PLA/PEDOT) and nanoperforated PLA (PLA/PEDOT/PLA/PEDOT/PLA), respectively. In spite of the amount of conducting polymer is the same for both four- and five-layered films, they exhibit significant differences. The electrochemical response in terms of electroactivity, areal specific capacitance, stability, and coulombic efficiency was greater for the four-layered electrodes than for the five-layered ones. Furthermore, the response in terms of leakage current and self-discharge was significantly better for the former electrodes than for the latter ones.

2021 ◽  
Vol 411 ◽  
pp. 128416
Author(s):  
S.T. Senthilkumar ◽  
Jeong-Sun Park ◽  
Rebeca Marcilla ◽  
Jesus Palma ◽  
Youngsik Kim

2008 ◽  
Vol 1071 ◽  
Author(s):  
Chia-Han Yang ◽  
Yue Kuo ◽  
Chen-Han Lin ◽  
Rui Wan ◽  
Way Kuo

AbstractSemiconducting or metallic nanocrystals embedded high-k films have been investigated. They showed promising nonvolatile memory characteristics, such as low leakage currents, large charge storage capacities, and long retention times. Reliability of four different kinds of nanocrystals, i.e., nc- Ru, -ITO, -Si and -ZnO, embedded Zr-doped HfO2 high-k dielectrics have been studied. All of them have higher relaxation currents than the non-embedded high-k film has. The decay rate of the relaxation current is in the order of nc-ZnO > nc-ITO > nc-Si > nc-Ru. When the relaxation currents of the nanocrystals embedded samples were fitted to the Curie-von Schweidler law, the n values were between 0.54 and 0.77, which are much lower than that of the non embedded high-k sample. The nanocrystals retain charges in two different states, i.e., deeply and loosely trapped. The ratio of these two types of charges was estimated. The charge storage capacity and holding strength are strongly influenced by the type of material of the embedded nanocrystals. The nc-ZnO embedded film holds trapped charges longer than other embedded films do. The ramp-relax result indicates that the breakdown of the embedded film came from the breakdown of the bulk high-k film. The type of nanocrystal material influences the breakdown strength.


2016 ◽  
Vol 4 (27) ◽  
pp. 10618-10626 ◽  
Author(s):  
Zhimin Li ◽  
Yufeng An ◽  
Zhongai Hu ◽  
Ning An ◽  
Yadi Zhang ◽  
...  

A novel two-dimensional (2D) free standing and flexible MnO2/graphene film (MGF) supercapacitor electrode is successfully fabricated by a spin-coating and hydrothermal process.


2012 ◽  
Vol 1451 ◽  
pp. 125-130
Author(s):  
Matthew M. Marchese ◽  
Rosario A. Gerhardt

ABSTRACTThe use of super acids such as chlorosulfonic acid (CSA) has proven to be extremely effective at exfoliating different forms of graphite in high concentrations without covalently functionalizing the surface of the graphene. Once quenched, the acid solutions can then be vacuum filtered through acid resistant polypropylene filter paper with an average pore size of 0.2 μm to collect the exfoliated carbon into a free standing retentate film. These films can then be easily washed, removed, and redispersed into solution by sonicating the films in a surfactant solution. Films were deposited onto various substrates using a range of spin coating parameters. This study has found that exfoliated CNTs provide the best conductivity out of the four types of chemically exfoliated carbon structures studied. CNTs have also proven to be the easiest type of exfoliated carbon to disperse and are able to stay in solution with less than 1%wt surfactant. The findings have shown that the electrical conductivity of the spin coated films actually increases with RPM and is inversely proportional to the film thickness. It is possible to achieve electrical conductivities as high as 10,507 ± 3728.64 [S/m] while still maintaining the transparency of the thin films. The initial spin coating step is more efficient at low ramp rates around 100 rpm/s and results in very smooth films. High spin speeds of 1800 rpm during the casting stage are found to play a large role in improving the conductivity of the films. Lastly, drying the samples on a hot plate for 5 min. on high has significantly improved the films electrical properties and virtually eliminated the need for tedious and expensive plasma cleaning treatments.


Author(s):  
K. L. Levine ◽  
D. V. Ryabokon ◽  
S. D. Khanin ◽  
R. V. Gelamo ◽  
N. A. Nikonorova

The paper studies multilayer graphenes in the form of free-standing films. The authors provide data about the morphology and electrical properties of films treated with plasma of various chemical composition. It is shown that it is possible to control the electrical properties of the surface and electron work function without significantly affecting its morphology. The obtained samples, combining mechanical flexibility with unreactiveness and high electrical conductivity, are promising for application in flexible charge storage devices.


Sign in / Sign up

Export Citation Format

Share Document