scholarly journals Bioactive Polyketide and Diketopiperazine Derivatives from the Mangrove-Sediment-Derived Fungus Aspergillus sp. SCSIO41407

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4851
Author(s):  
Jian Cai ◽  
Chunmei Chen ◽  
Yanhui Tan ◽  
Weihao Chen ◽  
Xiaowei Luo ◽  
...  

Ten polyketide derivatives (1–10), including a new natural product named (E)-2,4-dihydroxy-3-methyl-6-(2-oxopent-3-en-1-yl) benzaldehyde (1), and five known diketopiperazines (11–15), were isolated from the mangrove-sediment-derived fungus Aspergillus sp. SCSIO41407. The structures of 1–15 were determined via NMR and MS spectroscopic analysis. In a variety of bioactivity screening, 3 showed weak cytotoxicity against the A549 cell line, and 2 exhibited weak antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 3, 5, and 6 showed inhibition against acetylcholinesterase (AChE) with IC50 values of 23.9, 39.9, and 18.6 μM. Compounds 11, 12, and 14 exhibited obvious inhibitory activities of lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) with IC50 values of 19.2, 20.9, and 8.7 μM, and they also suppressed RANKL-induced osteoclast differentiation in bone marrow macrophages cells (BMMCs), with the concentration of 5 μM. In silico molecular docking with AChE and NF-κB p65 protein were also performed to understand the inhibitory activities, and 1, 11–14 showed obvious protein/ligand-binding effects to the NF-κB p65 protein.

2019 ◽  
Vol 16 (6) ◽  
pp. 474-477 ◽  
Author(s):  
Pham Van Khang ◽  
Nguyen Thi Hien Lan ◽  
Le Quang Truong ◽  
Mai Thi Minh Chau ◽  
Mai Xuan Truong ◽  
...  

In this report, two new steroidal glycosides were isolated and determined from n-butanol fraction of A.asphodeloides. The structures were confirmed in comparison with the spectral data of known compounds by using different spectroscopic analysis approaches including 1D & 2D-NMR techniques and HRMS. The anti-proliferation screening against cancer cell lines A549 and HeLa indicated that compound 1 exhibited good inhibitory activities with IC50 values of 0.79 and 0.55 µg/mL, respectively.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 547
Author(s):  
Yu Dai ◽  
Kunlong Li ◽  
Jianglian She ◽  
Yanbo Zeng ◽  
Hao Wang ◽  
...  

A pair of novel lipopeptide epimers, sinulariapeptides A (1) and B (2), and a new phthalide glycerol ether (3) were isolated from the marine algal-associated fungus Cochliobolus lunatus SCSIO41401, together with three known chromanone derivates (4–6). The structures of the new compounds, including the absolute configurations, were determined by comprehensive spectroscopic methods, experimental and calculated electronic circular dichroism (ECD), and Mo2 (OAc)4-induced ECD methods. The new compounds 1–3 showed moderate inhibitory activity against acetylcholinesterase (AChE), with IC50 values of 1.3–2.5 μM, and an in silico molecular docking study was also performed.


2020 ◽  
Vol 17 (11) ◽  
pp. 1330-1341
Author(s):  
Yan Zhang ◽  
Niefang Yu

Background: Fibroblast growth factors (FGFs) and their high affinity receptors (FGFRs) play a major role in cell proliferation, differentiation, migration, and apoptosis. Aberrant FGFR signaling pathway might accelerate development in a broad panel of malignant solid tumors. However, the full application of most existing small molecule FGFR inhibitors has become a challenge due to the potential target mutation. Hence, it has attracted a great deal of attention from both academic and industrial fields for hunting for novel FGFR inhibitors with potent inhibitory activities and high selectivity. Objective: Novel 5-amino-1H-pyrazole-1-carbonyl derivatives were designed, synthesized, and evaluated as FGFR inhibitors. Methods: A series of 5-amino-1H-pyrazole-1-carbonyl derivatives were established by a condensation of the suitable formyl acetonitrile derivatives with either hydrazine or hydrazide derivatives in the presence of anhydrous ethanol or toluene. The inhibitory activities of the target compounds were screened against the FGFRs and two representative cancer cell lines. Tests were carried out to observe the inhibition of 8e against FGFR phosphorylation and downstream signal phosphorylation in human gastric cancer cell lines (SNU-16). The molecular docking of all the compounds were performed using Molecular Operating Environment in order to evaluate their binding abilities with the corresponding protein kinase. Results: A series of 5-amino-1H-pyrazole-1-carbonyl derivatives have been designed and synthesized, screened for their inhibitory activities against FGFRs and cancer cell lines. Most of the target compounds showed moderate to good anti-proliferate activities against the tested enzymes and cell lines. The most promising compounds 8e suppressed FGFR1-3 with IC50 values of 56.4, 35.2, 95.5 nM, and potently inhibited the SNU-16 and MCF-7 cancer cells with IC50 values of 0.71 1.26 μM, respectively. And 8e inhibited the growth of cancer cells containing FGFR activated by multiple mechanisms. In addition, the binding interactions were quite similar in the molecular models between generated compounds and Debio-1347 with the FGFR1. Conclusion: According to the experimental findings, 5-amino-1H-pyrazole-1-carbonyl might serve as a promising template of an FGFR inhibitor.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3913
Author(s):  
Rui-Jie He ◽  
Jun Li ◽  
Yong-Lin Huang ◽  
Ya-Feng Wang ◽  
Bing-Yuan Yang ◽  
...  

Polyphenols, widely distributed in the genus Melastoma plants, possess extensive cellular protective effects such as anti-inflammatory, anti-tyrosinase, and anti-obesity, which makes it a potential anti-inflammatory drug or enzyme inhibitor. Therefore, the aim of this study is to screen for the anti-inflammatory and enzyme inhibitory activities of compounds from title plant. Using silica gel, MCI, ODS C18, and Sephadex LH-20 column chromatography, as well as semipreparative HPLC, the extract of Melastoma normale roots was separated. Four new ellagitannins, Whiskey tannin C (1), 1-O-(4-methoxygalloyl)-6-O-galloyl-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (2), 1-O-galloyl-6-O-(3-methoxygalloyl)-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (3), and 1-O-galloyl-6-O-vanilloyl-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucose (4), along with eight known polyphenols were firstly obtained from this plant. The structures of all isolates were elucidated by HRMS, NMR, and CD analyses. Using lipopolysaccharide (LPS)-stimulated RAW2 64.7 cells, we investigated the anti-inflammatory activities of compounds 1–4, unfortunately, none of them exhibit inhibit nitric oxide (NO) production, their IC50 values are all > 50 μM. Anti-tyrosinase activity assays was done by tyrosinase inhibition activity screening model. Compound 1 showed weak tyrosinase inhibitory activity with IC50 values of 426.02 ± 11.31 μM. Compounds 2–4 displayed moderate tyrosinase inhibitory activities with IC50 values in the range of 124.74 ± 3.12–241.41 ± 6.23 μM. The structure–activity relationships indicate that hydroxylation at C-3′, C-4′, and C-3 in the flavones were key to their anti-tyrosinase activities. The successful isolation and structure identification of ellagitannin provide materials for the screening of anti-inflammatory drugs and enzyme inhibitors, and also contribute to the development and utilization of M. normale.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 362
Author(s):  
Bolin Hou ◽  
Sushi Liu ◽  
Ruiyun Huo ◽  
Yueqian Li ◽  
Jinwei Ren ◽  
...  

Two new diterpenoids, hypoxyterpoids A (1) and B (2), and four new isocoumarin derivatives, hypoxymarins A–D (4–7), together, with seven known metabolites (3 and 8–13) were obtained from the crude extract of the mangrove-derived fungus Hypoxylon sp. The structures of the new compounds were elucidated on the basis of 1- and 2-dimensional (1D/2D) nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric analysis. The absolute configurations of compounds 1, 2, 4, 5, and 7 were determined by comparison of experimental and calculated electronic circular dichroism (ECD) spectra, and the absolute configurations of C-4′ in 6 and C-9 in 7 were determined by [Rh2(OCOCF3)4]-induced ECD spectra. Compound 1 showed moderate α-glucosidase inhibitory activities with IC50 values of 741.5 ± 2.83 μM. Compounds 6 and 11 exhibited DPPH scavenging activities with IC50 values of 15.36 ± 0.24 and 3.69 ± 0.07 μM, respectively.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 383
Author(s):  
Milan Jakubek ◽  
Michal Masařík ◽  
Tomáš Bříza ◽  
Robert Kaplánek ◽  
Kateřina Veselá ◽  
...  

The study of human protoporphyrinogen oxidase (hPPO) inhibition can contribute significantly to a better understanding of some pathogeneses (e.g., porphyria, herbicide exposure) and the development of anticancer agents. Therefore, we prepared new potential inhibitors with Schiff base structural motifs (2-hydroxybenzaldehyde-based Schiff bases 9–13 and chromanone derivatives 17–19) as structurally relevant to PPO herbicides. The inhibitory activities (represented by the half maximal inhibitory concentration (IC50) values) and enzymatic interactions (represented by the hPPO melting temperatures) of these synthetic compounds and commercial PPO herbicides used against hPPO were studied by a protoporphyrin IX fluorescence assay. In the case of PPO herbicides, significant hPPO inhibition and changes in melting temperature were observed for oxyfluorten, oxadiazon, lactofen, butafenacil, saflufenacil, oxadiargyl, chlornitrofen, and especially fomesafen. Nevertheless, the prepared compounds did not display significant inhibitory activity or changes in the hPPO melting temperature. However, a designed model of hPPO inhibitors based on the determined IC50 values and a docking study (by using AutoDock) found important parts of the herbicide structural motif for hPPO inhibition. This model could be used to better predict PPO herbicidal toxicity and improve the design of synthetic inhibitors.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2075
Author(s):  
Tianrui Zhao ◽  
Mengxue Sun ◽  
Lingpeng Kong ◽  
Qingwang Xue ◽  
Yudan Wang ◽  
...  

Vaccinium dunalianum Wight, usually processed as a traditional folk tea beverage, is widely distributed in the southwest of China. The present study aimed to investigate the antioxidant, α-glucosidase and pancreatic lipase inhibitory activities of V.dunalianum extract and isolate the bioactive components. In this study, the crude extract (CE) from the buds of V. dunalianum was prepared by the ultrasound-assisted extraction method in 70% methanol and then purified with macroporous resin D101 to obtain the purified extract (PM). Five fractions (Fr. A–E) were further obtained by MPLC column (RP-C18). Bioactivity assays revealed that Fr. B with 40% methanol and Fr. D with 80% methanol had better antioxidant with 0.48 ± 0.03 and 0.62 ± 0.01 nM Trolox equivalent (TE)/mg extract for DPPH, 0.87 ± 0.02 and 1.58 ± 0.02 nM TE/mg extract for FRAP, 14.42 ± 0.41 and 19.25 ± 0.23 nM TE/mg extract for ABTS, and enzyme inhibitory effects with IC50 values of 95.21 ± 2.21 and 74.55 ± 3.85 for α-glucosidase, and 142.53 ± 11.45 and 128.76 ± 13.85 µg/mL for pancreatic lipase. Multivariate analysis indicated that the TPC and TFC were positively related to the antioxidant activities. Further phytochemical purification led to the isolation of ten compounds (1–10). 6-O-Caffeoylarbutin (7) showed significant inhibitory effects on α-glucosidase and pancreatic lipase enzymes with values of 38.38 ± 1.84 and 97.56 ± 7.53 µg/mL, and had the highest antioxidant capacity compared to the other compounds.


2020 ◽  
Vol 11 (3) ◽  
pp. 66
Author(s):  
Umar M. Badeggi ◽  
Jelili A. Badmus ◽  
Subelia S. Botha ◽  
Enas Ismail ◽  
Jeanine L. Marnewick ◽  
...  

In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.


2013 ◽  
Vol 24 (8) ◽  
pp. 2201-2214 ◽  
Author(s):  
Karl Wu ◽  
Tzu-Hung Lin ◽  
Houng-Chi Liou ◽  
Dai-Hua Lu ◽  
Yi-Ru Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document