scholarly journals Malate Transport and Metabolism in Nitrogen-Fixing Legume Nodules

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6876
Author(s):  
Nicholas J. Booth ◽  
Penelope M. C. Smith ◽  
Sunita A. Ramesh ◽  
David A. Day

Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.

2019 ◽  
Author(s):  
◽  
Nhung Thi Huyen Hoang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Nitrogen is a macronutrient that is critical for plant growth and development because it provides the building blocks of nucleic acids, proteins, chlorophyll, and energy- transfer compounds, such as ATP. Although 78% of the atmosphere is diatomic nitrogen, this form is inert and unavailable to plants due to the strong nitrogen-nitrogen triple bond. Plants can only absorb nitrogen in the forms of NH4+ or NO3-. Most of the inorganic nitrogen available to crop plants is provided through fertilizers synthesized based on the Haber-Bosch process. This process converts atmospheric nitrogen (N2) into ammonia (NH3) by a reaction with hydrogen (H2) using a metal catalyst (iron) under high temperatures (~500 [degrees]C) and high pressures (150-300 bar). Ammonia production by this method consumes a lot of energy, which is derived from burning fossil fuels. Synthetic ammonia production by the Haber-Bosch process causes losses of biodiversity through eutrophication, soil acidification and global increase in N2O atmospheric concentration, which is the third most significant greenhouse gas. An alternative approach to provide a sustainable nitrogen source to plants without causing such damage to the environment is through biological nitrogen fixation between legume species and Rhizobium bacteria. The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, specialized organs within which rhizobia convert atmospheric nitrogen into ammonia for plant consumption. In return, the legume host plants provide rhizobia with photosynthate as a carbon source for their growth. The legume - Rhizobium symbiosis is a sophisticated process that requires numerous regulators including the 20-24 nucleotide-long microRNAs which negatively regulate the expression of their target messenger RNAs. In my study, we provide two examples that demonstrate the significant role of microRNAs in the symbiotic interplay between soybean, an important legume crop, and rhizobia. In the first example, our results suggest that gma-miR319i functions as a positive regulator of nodule number during the soybean - Bradyrhizobium symbiosis by targeting the TCP33 transcription factor. Overexpression and CRISPR/cas9-mediated gene mutation of gma-miR319i increased and reduced nodule number after rhizobial inoculation, respectively. gma-miR319i and TCP33 showed an inverse expression pattern in different stages of nodule development. TCP33 modulated nodule development in a gma-miR319i dependent manner. The expression of gma-miR319i and TCP33 was differentially regulated in one soybean mutant line that exhibits a hypernodulation phenotype. In the second example, we further investigated the mechanism by which two identical microRNAs, gma-miR171o and gma-miR171q, function in modulating the spatial and temporal aspects of soybean nodulation. Although sharing the identical mature sequence, gma-miR171o and gma-miR171q genes are divergent and show unique, tissue-specific expression patterns. The expression levels of the two miRNAs are negatively correlated with that of their target genes. Ectopic expression of these miRNAs in transgenic hairy roots resulted in a significant reduction in nodule formation. Both gma-miR171o and gma-miR171q target members of the GRAS transcription factor superfamily, namely GmSCL-6 and GmNSP2. Besides those two above-mentioned examples, we were able to generate and characterize an enhancer trap insertional mutant of the NODULATION SIGNALING PATHWAY 2 (NSP2) gene which is the target gene of Gma-miR171 and also an important regulator of nodulation. Overall, our study shows the importance of microRNAs in the regulation of nitrogen-fixing symbiosis. Our results contribute to efforts to fully understand the molecular mechanisms controlling the legume - Rhizobium interaction. Our ultimate hope is that the information gained through my studies can lead to an increased utilization of biological nitrogen fixation for sustainable agriculture and environment protection.


2020 ◽  
Vol 2 (1) ◽  
pp. 04-08
Author(s):  
Kripa Adhikari ◽  
Sudip Bhandari ◽  
Subash Acharya

Azolla is a free-floating water fern which in symbiotic association with cyanobacterium Anabaena azollaefixes the atmospheric nitrogen. Nitrogen fixing ability of cyanobacterialsymbiont varies between 30 and 60 kg N ha−1 which designates Azolla as an important biological nitrogen source for rice ecosystem. Inoculation of Azolla is an alternative and sustainable source of nitrogen to increase the rice productivity and it also can decrease the use of synthetic fertilizer. A number of past researches prove that Azolla has been used as apotential biofertilizer for rice production. Azolla is either incorporated in the soil before rice transplanting or grown as a dual crop along with rice. The objective of this paper is to provide a brief account of importance as well as developments in the utilization of Azolla-Anabaena system in agriculture, mainly rice production.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

It has been assumed by many involved in freeze-etch or freeze-fracture studies that it would be useless to etch specimens which were cryoprotected by more than 15% glycerol. We presumed that the amount of cryoprotective material exposed at the surface would serve as a contaminating layer and prevent the visualization of fine details. Recent unexpected freeze-etch results indicated that it would be useful to compare complementary replicas in which one-half of the frozen-fractured specimen would be shadowed and replicated immediately after fracturing whereas the complement would be etched at -98°C for 1 to 10 minutes before being shadowed and replicated.Standard complementary replica holders (Steere, 1973) with hinges removed were used for this study. Specimens consisting of unfixed virus-infected plant tissue infiltrated with 0.05 M phosphate buffer or distilled water were used without cryoprotectant. Some were permitted to settle through gradients to the desired concentrations of different cryoprotectants.


Author(s):  
Janja Kuzevski ◽  
Nada Milosevic ◽  
Sasa Krstanovic ◽  
Zora Jelicic

In sugar beet production, one of the most important factors that affect the yield, apart from genetic properties, is the use of mineral fertilizers. Considerate amounts of mineral fertilizers are used in sugar beet production. However, if agroecological conditions are not optimum, mineral fertilizers cannot be completely absorbed, which may lead to soil contamination. Therefore, research has been focusing on ways of using atmospheric nitrogen by means of nitrogen-fixing bacteria. Numerous researches have proved that one part of mineral fertilizers can be replaced by biological nitrogen. The aim of this research was to determine the effect of genotype, azotobacter and the amount of mineral fertilizers on the root yield of sugar beet and on the microbiological activity of the sugar beet rhizospheric soil. Three hybrids of sugar beet were used during the two years of the research. The seed of the hybrids was inoculated with three strains of azotobacter. Various amounts of NPK were used (0;30;60;90 kg/ha). At the end of the vegetation period, the following were determined: root yield, total number of bacteria, number of azotobacter, oligotrophic bacteria, ammonifiers, fungi, and actinomycetes in soil. Dehydrogenase activity was measured. The results were processed statistically (analysis of variance for factorial trials) and the effect of the factors was determined upon the expected mean square values. The yield was mainly affected by the amount of mineral fertilizers. However, the effect of mineral fertilizers was different with different inoculation treatments. The effect of the examined factors was dependant upon genotype, amount of mineral fertilizers, inoculation and the year of trials. The interaction between genotype, mineral fertilizers, inoculation and the year of trials was the factor that had the greatest effect on the number of almost all the examined soil microorganisms.


BIO-PROTOCOL ◽  
2017 ◽  
Vol 7 (5) ◽  
Author(s):  
Christian Elowsky ◽  
Yashitola Wamboldt ◽  
Sally Mackenzie

2021 ◽  
Vol 43 (3) ◽  
pp. 27-35
Author(s):  
Pham Viet Cuong ◽  
Nguyen Phuong Hoa

The bacteria capable of fixing atmospheric nitrogen were isolated from cassava cultivated soils of Vietnam. The potential isolates were identified by analyzing the 16S rRNA gene and by morphological, biochemical, cultural characteristics. The selected isolates were assigned to the species Bacillus sp. DQT2 M17, Bacillus subtilis DTAN6 M17, and Bacillus megaterium DSHB I8. The effect of culture conditions on the nitrogen-fixing activity of three selected isolates were studied and the obtained results showed that the highest amount of accumulated ammonia was detected after 6 days of incubation at 35 oC, pH 7.0 with sucrose as a carbon source. The selected strains could be exploited as inoculants for microbial fertilizer production.


Botany ◽  
2021 ◽  
Author(s):  
Samir Djouadi ◽  
Amina Bouherama ◽  
Fatiha AID ◽  
Saïd Amrani

La présente étude porte sur la nature des rhizobia associés aux légumineuses du genre Hippocrepis L. qui compte une dizaine d’espèces en Algérie et pour laquelle très peu de travaux ont été jusqu’ici consacrés. Les résultats de nos investigations qui ont portés sur 26 plants représentant 8 espèces de ce genre et provenant de 17 localités du nord et du sud du pays révèlent que tous les plants étaient nodulés et fixateurs d’azote, ce qui indique que les 8 espèces identifiées sont capables d’établir une symbiose efficiente avec les rhizobia présents dans les sols qui les supportent. Le séquençage du gène de l’ARN 16S des 26 souches de rhizobia isolées et authentifiées par des tests de nodulation au laboratoire, permet de les assigner à 16 espèces de rhizobia réparties sur 5 genres : Ensifer, Mesorhizobium, Bradyrhizobium, Rhizobium et Neorhizobium avec une prédominance des représentants des genres Ensifer et Mesorhizobium. Les résultats de cette étude qui est la première dédiée spécifiquement au genre Hippocrepis indiquent que la symbiose à rhizobia et la capacité d’utiliser, par ce biais, l’azote atmosphérique sont communes chez les représentants de ce genre en Algérie, ils révèlent aussi la grande diversité des rhizobia qui sont associés à ce genre. Abstract: The present study focuses on the nature of the rhizobia associated with legumes of the genus Hippocrepis L. which counts about ten species in Algeria and for which very little work has been performed so far. The results of our investigations, which focused on 26 plants representing 8 species of this genus and coming from 17 localities in the north and south of the country, show that all plants were nodulated and nitrogen-fixing, which indicates that the species identified are capable of establishing an efficient symbiosis with the rhizobia present in the soils that support them. The sequencing of the 16S RNA gene of the 26 strains of rhizobia isolated and authenticated by nodulation tests in the laboratory, allows their assignation to16 species of rhizobia spread over 5 genera: Ensifer, Mesorhizobium, Bradyrhizobium, Rhizobium and Neorhizobium with a predominance of representatives of the genera Ensifer and Mesorhizobium. The results of this study, which is the first dedicated to the genus Hippocrepis, show that the rhizobial symbiosis and its ability to use atmospheric nitrogen are common among representatives of the genus Hippocrepis in Algeria and reveal a great diversity of associated rhizobia


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 768
Author(s):  
Virginia Sánchez-Navarro ◽  
Raúl Zornoza ◽  
Ángel Faz ◽  
Catalina Egea-Gilabert ◽  
Margarita Ros ◽  
...  

The introduction of nitrogen fixing bacteria (NFB) and arbuscular mycorrhizal fungi (AMF) into the soil is an advisable agricultural practice for the crop, since it enhances nutrient and water uptake and tolerance to biotic and abiotic stresses. The aim of this work was to study plant nutrition, biological nitrogen fixation (BNF) and crop yield and quality, after inoculating seeds with NFBs ((Rhizobium leguminosarum, Burkholderia cenocepacia, Burkholderia vietnamiensis)) and/or AMFs (Rhizophagus irregularis, Claroideoglomus etunicatum, Claroideoglomus claroideum and Funneliformis mosseae) in a fava bean crop in two seasons. The composition of the nodule bacterial community was evaluated by the high-throughput sequencing analysis of bacterial 16 S rRNA genes. It was found that microbial inoculation accompanied by a 20% decrease in mineral fertilization had no significant effect on crop yield or the nutritional characteristics compared with a non-inoculated crop, except for an increase in the grain protein content in inoculated plants. None of the inoculation treatments increased biological nitrogen fixation over a non-inoculated level. The bacterial rRNA analysis demonstrated that the genus Rhizobium predominated in all nodules, both in inoculated and non-inoculated treatments, suggesting the previous presence of these bacteria in the soil. In our study, inoculation with Rhizobium leguminosarum was the most effective treatment for increasing protein content in seeds, while Burkholderia sp. was not able to colonise the plant nodules. Inoculation techniques used in fava beans can be considered an environmentally friendly alternative, reducing the input of fertilizers, while maintaining crop yield and quality, with the additional benefit of increasing the grain protein content. However, further research is required on the selection and detection of efficient rhizobial strains under local field conditions, above all those related to pH and soil type, in order to achieve superior nitrogen-fixing bacteria.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 796 ◽  
Author(s):  
Kathrin Kohnen-Johannsen ◽  
Oliver Kayser

Tropane alkaloids (TA) are valuable secondary plant metabolites which are mostly found in high concentrations in the Solanaceae and Erythroxylaceae families. The TAs, which are characterized by their unique bicyclic tropane ring system, can be divided into three major groups: hyoscyamine and scopolamine, cocaine and calystegines. Although all TAs have the same basic structure, they differ immensely in their biological, chemical and pharmacological properties. Scopolamine, also known as hyoscine, has the largest legitimate market as a pharmacological agent due to its treatment of nausea, vomiting, motion sickness, as well as smooth muscle spasms while cocaine is the 2nd most frequently consumed illicit drug globally. This review provides a comprehensive overview of TAs, highlighting their structural diversity, use in pharmaceutical therapy from both historical and modern perspectives, natural biosynthesis in planta and emerging production possibilities using tissue culture and microbial biosynthesis of these compounds.


Sign in / Sign up

Export Citation Format

Share Document