scholarly journals Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 796 ◽  
Author(s):  
Kathrin Kohnen-Johannsen ◽  
Oliver Kayser

Tropane alkaloids (TA) are valuable secondary plant metabolites which are mostly found in high concentrations in the Solanaceae and Erythroxylaceae families. The TAs, which are characterized by their unique bicyclic tropane ring system, can be divided into three major groups: hyoscyamine and scopolamine, cocaine and calystegines. Although all TAs have the same basic structure, they differ immensely in their biological, chemical and pharmacological properties. Scopolamine, also known as hyoscine, has the largest legitimate market as a pharmacological agent due to its treatment of nausea, vomiting, motion sickness, as well as smooth muscle spasms while cocaine is the 2nd most frequently consumed illicit drug globally. This review provides a comprehensive overview of TAs, highlighting their structural diversity, use in pharmaceutical therapy from both historical and modern perspectives, natural biosynthesis in planta and emerging production possibilities using tissue culture and microbial biosynthesis of these compounds.

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2903
Author(s):  
Omobolanle O. Oloyede ◽  
Carol Wagstaff ◽  
Lisa Methven

Glucosinolates are secondary plant metabolites present in Brassica vegetables. The endogenous enzyme myrosinase is responsible for the hydrolysis of glucosinolates, yielding a variety of compounds, including health-promoting isothiocyanates. The influence of cabbage accession and growing conditions on myrosinase activity, glucosinolates (GSL) and their hydrolysis products (GHPs) of 18 gene-bank cabbage accessions was studied. Growing conditions, cabbage morphotype and accession all significantly affected myrosinase activity and concentration of glucosinolates and their hydrolysis products. In general, cabbages grown in the field with lower growth temperatures had significantly higher myrosinase activity than glasshouse samples. Profile and concentration of glucosinolates and their hydrolysis products differed across the accessions studied. Aliphatic glucosinolates accounted for more than 60 % of total glucosinolates in most of the samples assessed. Nitriles and epithionitriles were the most abundant hydrolysis products formed. The results obtained showed that consumption of raw cabbages might reduce the amount of beneficial hydrolysis products available to the consumer, as more nitriles were produced from hydrolysis compared to beneficial isothiocyanates. However, red and white cabbages contained high concentrations of glucoraphanin and its isothiocyanate, sulforaphane. This implies that careful selection of accessions with ample concentrations of certain glucosinolates can improve the health benefits derived from raw cabbage consumption.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4537
Author(s):  
V. P. Thinh Nguyen ◽  
Jon Stewart ◽  
Michel Lopez ◽  
Irina Ioannou ◽  
Florent Allais

Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites.


Author(s):  
Charles Oluwaseun Adetunji ◽  
Santwana Palai ◽  
Chika Precious Ekwuabu ◽  
Chukwuebuka Egbuna ◽  
Juliana Bunmi Adetunji ◽  
...  

2017 ◽  
Vol 15 (1) ◽  
pp. 332-343 ◽  
Author(s):  
Karolina A. Wojtunik-Kulesza ◽  
Katarzyna Targowska-Duda ◽  
Katarzyna Klimek ◽  
Grażyna Ginalska ◽  
Krzysztof Jóźwiak ◽  
...  

AbstractAlzheimer’s disease (AD) is by far the most prevalent of all known forms of dementia. Despite wide-spread research, the main causes of emergence and development of AD have not been fully recognized. Natural, low-molecular, lipophilic terpenoids constitute an interesting group of secondary plant metabolites, that exert biological activities of possible use in the prevention and treatment of AD. In order to identify secondary metabolites possessing both antioxidant activity and the potential to increase the level of acetylcholine, selected terpenoids have been screened for possible acetylcholinesterase inhibitory activity by use of two methods, namely Marston (chromatographic assay) and Ellman (spectrophotometric assay). In order to describe the interaction between terpenes and AChE active gorge, molecular docking simulations were performed. Additionally, all analyzed terpenes were also evaluated for their cytotoxic properties against two normal cell lines using MTT assay. The obtained results show that: carvone (6), pulegone (8) and γ-terpinene (7) possess desirable AChE inhibitory activity. MTT assay revealed low or lack of cytotoxicity of these metabolites. Thus, among the investigated terpenes, carvone (6), pulegone (8) and y-terpinene (7) can be recognized as compounds with most promising activities in the development of multi-target directed ligands.


Author(s):  
Parastou Farshi ◽  
Eda Ceren Kaya ◽  
Fataneh Hashempour-Baltork ◽  
Kianoush Khosravi-Darani

: Coronaviruses have caused worldwide outbreaks in different periods. SARS (severe acute respiratory syndrome), was the first emerged virus from this family, followed by MERS (Middle East respiratory syndrome) and SARS-CoV-2 (2019-nCoV or COVID 19), which is newly emerged. Many studies have been conducted on the application of chemical and natural drugs for treating these coronaviruses and they are mostly focused on inhibiting the proteases of viruses or blocking their protein receptors through binding to amino acid residues. Among many substances which are introduced to have an inhibitory effect against coronaviruses through the mentioned pathways, natural components are of specific interest. Secondary and primary metabolites from plants, are considered as potential drugs to have an inhibitory effect on coronaviruses. IC50 value (the concentration in which there is 50% loss in enzyme activity), molecular docking score and binding energy are parameters to understand the ability of metabolites to inhibit the specific virus. In this study we did a review of 154 papers on the effect of plant metabolites on different coronaviruses and data of their IC50 values, molecular docking scores and inhibition percentages are collected in tables. Secondary plant metabolites such as polyphenol, alkaloids, terpenoids, organosulfur compounds, saponins and saikosaponins, lectins, essential oil, and nicotianamine, and primary metabolites such as vitamins are included in this study.


2016 ◽  
pp. 135-168
Author(s):  
Tamoghna Saha ◽  
Nithya C. ◽  
Shyambabu S. ◽  
Kiran Kumari ◽  
S. N. Ray ◽  
...  

Author(s):  
Partha Pradip Adhikari ◽  
Satya Bhusan Paul

  Cleome genus includes 601 plant species from the family Cleomaceae. Of more than 600 plants, 206 (34.3%) plants are having accepted species names. Cleome gynandra Linn. is a well-known medicinal plant with traditional and pharmacological importance. A good number of secondary plant metabolites have also been isolated from different parts of C. gynandra. Our investigation confirms two mutant varieties of C. gynandra exists in India. Accordingly, the objective of this study was designed to critically evaluate the pharmacological and phytochemical evaluation of C. gynandra of two mutant variety, to provide a consolidated platform for research potential of both the mutant varieties of C. gynandra. Careful scrutiny reveals that the plant possesses a huge range pharmacological applications, such as anti-inflammatory, free radical scavenging, anticancerous, immunomodulator, and antidiabetic agents. To arrive its pharmacological importance the published papers also shown an enormous amount of phytochemicals endorsement. Scientific perusal reveals different parts of the plant has an immense medicinal importance which proofs its traditional use round the glove. But in North-Eastern region of India, the same plant abundantly found in pink mutant variety. To date, there is not much research investigation for this mutant variety to validate its pharmacological importance. Therefore, research needs to scrutinize and compare the medicinal claims of the pink mutant variety in the bio-diverse region of North-East India.


2020 ◽  
Vol 10 (2) ◽  
pp. 148-152
Author(s):  
Z.M. Anka ◽  
Vijender Singh ◽  
S.N. Gimba ◽  
Gunjan Singh

Millions of people in the world depend on traditional medicinal plants for treatment of many diseases.  They have curative properties due to presence of various complex chemical substances of different composition, which are found as secondary plant metabolites in one or more parts of these plants. These plant metabolites according to their composition are grouped as flavonoids, tannins, alkaloids, saponins etc. Guiera senegalensis(Gs), which grows in abundance in semi-desert area of Western Africa such as Nigeria, has been used for treating specific diseases and wounds. The study is carried out to investigate the phytochemical analysis, toxicity, and the antifungal activity of Gs leaves extract. Keywords: Guiera senegalensis, Antifungal activity, Brine shrimp, toxicity, phytochemical analysis;


2021 ◽  
Vol 22 (23) ◽  
pp. 12824
Author(s):  
Weixin Liu ◽  
Yi Feng ◽  
Suhang Yu ◽  
Zhengqi Fan ◽  
Xinlei Li ◽  
...  

Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.


Sign in / Sign up

Export Citation Format

Share Document