scholarly journals Schisandrin B Attenuates Hepatic Stellate Cell Activation and Promotes Apoptosis to Protect against Liver Fibrosis

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6882
Author(s):  
Zhiman Li ◽  
Lijuan Zhao ◽  
Yunshi Xia ◽  
Jianbo Chen ◽  
Mei Hua ◽  
...  

The activation of hepatic stellate cells (HSC) plays a key role in the progression of hepatic fibrosis, it is essential to remove activated HSC through apoptosis to reverse hepatic fibrosis. Schisandrin B (Sch B) is the main chemical component of schisandrin lignan, and it has been reported to have good hepatoprotective effects. However, Schisandrin B on HSC apoptosis remains unclear. In our study, we stimulated the HSC-T6 and LX-2 cell lines with TGF-β1 to induce cell activation, and the proliferation and apoptosis of the activated HSC-T6 and LX-2 cells were detected after treatment with different doses of Schisandrin B. Flow cytometry results showed that Sch B significantly reduced the activity of activated HSC-T6 and LX-2 cells and significantly induced apoptosis. In addition, the cleaved-Caspase-3 levels were increased, the Bax activity was increased, and the Bcl-2 expression was decreased in HSC-T6 and LX-2 cells treated with Sch B. Our study showed that Sch B inhibited the TGF-β1-induced activity of hepatic stellate cells by promoting apoptosis.

2020 ◽  
Author(s):  
Eugene Joeh ◽  
Timothy O’Leary ◽  
Weichao Li ◽  
Richard Hawkins ◽  
Jonathan R. Hung ◽  
...  

AbstractGalectin-3 is a glycan-binding protein (GBP) that binds β-galactoside glycan structures to orchestrate a variety of important biological events, including the activation of hepatic stellate cells to cause hepatic fibrosis. While the requisite glycan epitopes needed to bind galectin-3 have long been elucidated, the cellular glycoproteins that bear these glycan signatures remain unknown. Given the importance of the three-dimensional arrangement of glycans in dictating GBP interactions, strategies that allow the identification of GBP receptors in live cells, where the native glycan presentation and glycoprotein expression are preserved, possess significant advantages over static and artificial systems. Here, we describe the integration of a proximity labeling method and quantitative mass spectrometry to map the glycan and glycoprotein interactors for galectin-3 in live hepatic stellate cells. Understanding the identity of the glycoproteins and defining the structures of the glycans required for galectin-3 mediated hepatic stellate cell activation will empower efforts to design and develop selective therapeutics to mitigate hepatic fibrosis.SignificanceBecause of the weak interactions between individual glycan-binding proteins (GBP), such as galectin-3, and glycans, strategies that allow the direct interrogation of these interactions in living cells remain limited. Thus, the glycan and glycoprotein ligands that are physiologically relevant for galectin-3 binding are insufficiently described. Here, we used a proximity labeling approach that catalytically tags interactors for galectin-3 and identified its pertinent glycan and glycoprotein counter-receptors in live hepatic stellate cells. This study demonstrates that proximity labeling is a powerful tool for mapping GBP complexes in living cells, and when coupled with chemical inhibitors, it can discriminate between protein-protein and protein-glycan interactions.Graphical Abstract


Author(s):  
Wenzhang Dai ◽  
Qin Qin ◽  
Zhiyong Li ◽  
Li Lin ◽  
Ruisheng Li ◽  
...  

Hepatic fibrosis is the final pathway of several chronic liver diseases, which is characterized by the accumulation of extracellular matrix due to chronic hepatocyte damage. Activation of hepatic stellate cells and oxidative stress (OS) play an important role in mediating liver damage and initiating hepatic fibrosis. Hence, hepatic fibrosis can be reversed by inhibiting multiple channels such as oxidative stress, liver cell damage, or activation of hepatic stellate cells. Liuwei Wuling Tablets is a traditional Chinese medicine formula with the effect of anti- hepatic fibrosis, but the composition and mechanism of reversing hepatic fibrosis are still unclear. Our study demonstrated that one of the main active components of the Chinese medicine Schisandra chinensis, schisandrin C (Sin C), significantly inhibited oxidative stress and prevented hepatocyte injury. Meanwhile one of the main active components of the Chinese medicine Curdione inhibited hepatic stellate cell activation by targeting the TGF-β1/Smads signaling pathway. The further in vivo experiments showed that Sin C, Curdione and the combination of both have the effect of reversing liver fibrosis in mice, and the combined effect of inhibiting hepatic fibrosis is superior to treatment with Sin C or Curdione alone. Our study provides a potential candidate for multi-molecular or multi-pathway combination therapies for the treatment of hepatic fibrosis and demonstrates that combined pharmacotherapy holds great promise in the prevention and treatment of hepatic fibrosis.


2021 ◽  
Author(s):  
Shi-Ying Dou ◽  
Jiu-Na Zhang ◽  
Xiao-Li Xie ◽  
Ting Liu ◽  
Jun-Li Hu ◽  
...  

Abstract Mitophagy plays an important role in the activation of hepatic stellate cells (HSCs). Mitochondria-targeted ubiquinone (MitoQ) is a mitochondria-targeted antioxidant that reduces the production of intracellular reactive oxygen species (ROS). However, its relationship with mitophagy remains unclear. This study evaluated mitophagy during HSC activation and the effects of MitoQ on mitophagy in cell culture and in an animal model of the activation of HSCs. We found that MitoQ reduced the activation of HSCs and alleviated hepatic fibrosis. While activation of primary HSCs or LX-2 cells was associated with reduced PINK1/parkin-mediated mitophagy, MitoQ reduced intracellular ROS levels, enhanced PINK1/parkin-mediated mitophagy, and inhibited the activation of HSCs. After knocking down the key mitophagy-related protein, PINK1, in LX-2 cells to block mitophagy, MitoQ intervention failed to inhibit HSC activation. Our results showed that MitoQ inhibited the activation of HSCs and alleviated hepatic fibrosis by enhancing PINK1/parkin-mediated mitophagy.


2001 ◽  
Vol 276 (50) ◽  
pp. 47744
Author(s):  
Norifumi Kawada ◽  
Dan Bach Kristensen ◽  
Kinji Asahina ◽  
Kazuki Nakatani ◽  
Yukiko Minamiyama ◽  
...  

2008 ◽  
Vol 19 (10) ◽  
pp. 4238-4248 ◽  
Author(s):  
Gunter Maubach ◽  
Michelle Chin Chia Lim ◽  
Lang Zhuo

Activation of hepatic stellate cells during liver fibrosis is a major event facilitating an increase in extracellular matrix deposition. The up-regulation of smooth muscle α-actin and collagen type I is indicative of the activation process. The involvement of cysteine cathepsins, a class of lysosomal cysteine proteases, has not been studied in conjunction with the activation process of hepatic stellate cells. Here we report a nuclear cysteine protease activity partially attributed to cathepsin F, which co-localizes with nuclear speckles. This activity can be regulated by treatment with retinol/palmitic acid, known to reduce the hepatic stellate cell activation. The treatment for 48 h leads to a decrease in activity, which is coupled to an increase in cystatin B and C transcripts. Cystatin B knockdown experiments during the same treatment confirm the regulation of the nuclear activity by cystatin B. We demonstrate further that the inhibition of the nuclear activity by E-64d, a cysteine protease inhibitor, results in a differential regulation of smooth muscle α-actin and collagen type I transcripts. On the other hand, cathepsin F small interfering RNA transfection leads to a decrease in nuclear activity and a transcriptional down-regulation of both activation markers. These findings indicate a possible link between nuclear cathepsin F activity and the transcriptional regulation of hepatic stellate cell activation markers.


2021 ◽  
Vol 21 ◽  
Author(s):  
Fahim Rejanur Tasin ◽  
Debasish Halder ◽  
Chanchal Mandal

: Liver fibrosis is one of the leading causes for cirrhotic liver disease and the lack of therapies to treat fibrotic liver is a major concern. Liver fibrosis is mainly occurred by activation of hepatic stellate cells and some stem cell therapies had previously reported for treatment. However, due to some problems with cell-based treatment, a safe therapeutic agent is vehemently sought by the researchers. Extracellular vesicles are cell-derived nanoparticles that are employed in several therapeutic approaches, including fibrosis, for their ability to transfer specific molecules in the target cells. In this review the possibilities of extracellular vesicles to inactivate stellate cells are summarized and discussed. According to several studies, extracellular vesicles from different sources can either put beneficial or detrimental effects by regulating the activation of stellate cells. Therefore, targeting extracellular vesicles for maximizing or inhibiting their production is a potential approach for fibrotic liver treatment. Extracellular vesicles from different cells can also inactivate stellate cells by carrying out the paracrine effects of those cells, working as the agents. They are also implicated as smart carrier of anti-fibrotic molecules when their respective parent cells are engineered to produce specific stellate cell-regulating substances. A number of studies showed stellate cell activation can be regulated by up/downregulation of specific proteins, and extracellular vesicle-based therapies can be an effective move to exploit these mechanisms. In conclusion, EVs are advantageous nano-carriers with the potential to treat fibrotic liver by inactivating activated stellate cells by various mechanisms.


2021 ◽  
Author(s):  
Peng Qi ◽  
Ming-Ze Ma ◽  
Jing-Hua Kuai

Abstract Aim:To elucidate the inhibitory role of growth differentiation factor 15 (GDF15) in liver fibrosis and its possible activation mechanism in hepatic stellate cells of mice.Methods:We generated a GDF15-neutralizing antibody that can inhibit TGF-β1-induced activation of the TGF-β/Smad2/3 pathway in LX-2 cells. All the mice in this study were induced by carbon tetrachloride and thioacetamide. In addition, primary hepatic stellate cells from mice were isolated from fresh livers using Nycodenz density gradient separation. The severity and extent of liver fibrosis in mice were evaluated by Sirius Red and Masson staining. The effect of GDF15 on the activation of the TGF-β pathway was detected using dual-luciferase reporter assays and Western blotting assays.Results:The expression of GDF15 in cirrhotic liver tissue was higher than that in normal liver tissue. Blocking GDF15 with a neutralizing antibody resulted in a delay in primary hepatic stellate cell activation and remission of liver fibrosis induced by carbon tetrachloride or thioacetamide. Meanwhile, TGF-β pathway activation was partly inhibited by a GDF15-neutralizing antibody in primary hepatic stellate cells. These results indicated that GDF15 plays an important role in regulating HSC activation and liver fibrosis progression.Conclusions:The inhibition of GDF15 attenuates chemical-inducible liver fibrosis and delays hepatic stellate cell activation, and this effect is probably mainly attributed to its regulatory role in TGF-β signalling.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Shai Z Fuchs ◽  
Bernardo Yusta ◽  
Laurie Baggio ◽  
Elodie Varin ◽  
Dianne Matthews ◽  
...  

Abstract A GLP-2 analogue is used in individuals with intestinal failure at risk for liver disease, yet the hepatic actions of GLP-2 are not understood. Treatment of high fat diet (HFD)-fed mice with GLP-2 did not modify the development of hepatosteatosis or hepatic inflammation. In contrast, Glp2r-/- mice exhibited increased hepatic lipid accumulation, deterioration in glucose tolerance, and upregulation of biomarkers of hepatic inflammation. Both mouse and human liver expressed the canonical GLP-2R, and hepatic Glp2r expression was upregulated in mice with hepatosteatosis. Cell fractionation localized the Glp2r to hepatic stellate cells (HSC), and markers of HSC activation and fibrosis were increased in livers from Glp2r-/- mice. Moreover, GLP-2 directly modulated gene expression in isolated HSCs ex vivo. Taken together, these findings define an essential role for the GLP-2R in hepatic adaptation to nutrient excess and unveil a gut hormone-HSC axis, linking GLP-2R signaling to control of hepatic stellate cell activation.


Sign in / Sign up

Export Citation Format

Share Document