scholarly journals Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7043
Author(s):  
David T. Wu ◽  
Jose G. Munguia-Lopez ◽  
Ye Won Cho ◽  
Xiaolu Ma ◽  
Vivian Song ◽  
...  

Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex. Polymeric materials have a broad range of applications in biomedical engineering and regenerative medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical devices for delivery of drugs and biologics. The focus of this review is to discuss the properties and clinical indications of polymeric scaffold materials and extracellular matrix technologies for DOC regenerative medicine. More specifically, this review outlines the key properties, advantages and drawbacks of natural polymers including alginate, cellulose, chitosan, silk, collagen, gelatin, fibrin, laminin, decellularized extracellular matrix, and hyaluronic acid, as well as synthetic polymers including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (ethylene glycol) (PEG), and Zwitterionic polymers. This review highlights key clinical applications of polymeric scaffolding materials to repair and/or regenerate various DOC tissues. Particularly, polymeric materials used in clinical procedures are discussed including alveolar ridge preservation, vertical and horizontal ridge augmentation, maxillary sinus augmentation, TMJ reconstruction, periodontal regeneration, periodontal/peri-implant plastic surgery, regenerative endodontics. In addition, polymeric scaffolds application in whole tooth and salivary gland regeneration are discussed.

2018 ◽  
Author(s):  
Murtaza Kaderi ◽  
Mohsin Ali ◽  
Alfiya Ali ◽  
Tasneem Kaderi

The goals of periodontal therapy are to arrest of periodontal disease progression and to attain the regeneration of the periodontal apparatus. Osseous grafting and Guided tissue regeneration (GTR) are the two techniques with the most extensive documentation of periodontal regeneration. However, these techniques offer limited potential towards regenerating the periodontal tissues. Recent surgical procedures and application of newer materials aim at greater and more predictable regeneration with the concept of tissue engineering for enhanced periodontal regeneration and functional attachment have been developed, analyzed, and employed in clinical practice


2021 ◽  
Vol 11 (7) ◽  
pp. 3262
Author(s):  
Neill J. Turner

The present Special Issue comprises a collection of articles addressing the many ways in which extracellular matrix (ECM), or its components parts, can be used in regenerative medicine applications. ECM is a dynamic structure, composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and glycosaminoglycans, synthesized by the resident cells. Consequently, ECM can be considered as nature’s ideal biologic scaffold material. The articles in this Special Issue cover a range of topics from the use of ECM components to manufacture scaffold materials, understanding how changes in ECM composition can lead to the development of disease, and how decellularization techniques can be used to develop tissue-derived ECM scaffolds for whole organ regeneration and wound repair. This editorial briefly summarizes the most interesting aspects of these articles.


2021 ◽  
Author(s):  
Young Hye Song ◽  
Mark Maynes ◽  
Nora Hlavac ◽  
Daniel Visosevic ◽  
Kaitlyn Daramola ◽  
...  

Decellularized tissues hold great potential for both regenerative medicine and disease modeling applications. The acellular extracellular matrix (ECM)-enriched scaffolds can be recellularized with patient-derived cells prior to transplantation, or digested...


Author(s):  
F R Green ◽  
N M Shubber ◽  
F S Koumpa ◽  
N J I Hamilton

Abstract Objective This review assesses regenerative medicine of the upper aerodigestive tract during the first two decades of the twenty-first century, focusing on end-stage fibrosis and tissue loss in the upper airways, salivary system, oropharynx and tongue. Method PubMed, Embase, Google Scholar, Cochrane Library, Medline and clinicaltrials.org were searched from 2000 to 2019. The keywords used were: bioengineering, regenerative medicine, tissue engineering, cell therapy, regenerative surgery, upper aerodigestive tract, pharynx, oropharynx, larynx, trachea, vocal cord, tongue and salivary glands. Original studies were subcategorised by anatomical region. Original human reports were further analysed. Articles on periodontology, ear, nose and maxillofacial disorders, and cancer immunotherapy were excluded. Results Of 716 relevant publications, 471 were original studies. There were 18 human studies included, within which 8 reported airway replacements, 5 concerned vocal fold regeneration and 3 concerned salivary gland regeneration. Techniques included cell transplantation, injection of biofactors, bioscaffolding and bioengineered laryngeal structures. Conclusion Moderate experimental success was identified in the restoration of upper airway, vocal fold and salivary gland function. This review suggests that a shift in regenerative medicine research focus is required toward pathology with a higher disease burden.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (10) ◽  
pp. 54-59 ◽  
Author(s):  
Matthew R. Callstrom ◽  
Mark D. Bednarski

The total world production of water-soluble polymers is estimated to be greater than five million tons per year. Water-soluble polymers are most conveniently described according to their origin in three classes (see Structures 1-6):∎ Natural polymers, including starch (1) and cellulose (2);∎ chemically modified natural polymers, including, for example, hydroxyethyl starch (3) and cellulose acetate (4); and∎ synthetic polymers, the most important of which are polyacrylamide (5) and polyvinyl alcohol (6), (commonly composed of both alcohol and acetate groups as shown). The widespread use of these materials is due to both their availability and the range of useful physical properties found in the various natural and chemically modified natural polymers.Of the commercial water-soluble polymers, approximately 50–80% are based on natural polysaccharide materials. One of the primary reasons that these materials find such widespread use is the dramatic response of their properties to changes in their functionality and stereochemistry: chemical modification or the combination of polysaccharides with other polymeric materials has yielded materials whose applications range from explosives to food additives. Although efforts directed at controlling the properties of polysaccharides has resulted in a wide variety of useful materials, we felt control of the composition of carbohydrate-based polymers at the molecular level would provide materials with properties superior to those derived from natural and chemically modified polysaccharide materials.Our approach for the preparation of new carbohydrate-based materials is to use the carbohydrate as a template for the introduction of desired functionality with complete regiochemical and stereochemical control by both chemical and enzymatic methods (Scheme I).


2009 ◽  
pp. 467-495
Author(s):  
Paul De Bank ◽  
Matthew Jones ◽  
Marianne Ellis

Sign in / Sign up

Export Citation Format

Share Document