Regenereation in periodontics

2018 ◽  
Author(s):  
Murtaza Kaderi ◽  
Mohsin Ali ◽  
Alfiya Ali ◽  
Tasneem Kaderi

The goals of periodontal therapy are to arrest of periodontal disease progression and to attain the regeneration of the periodontal apparatus. Osseous grafting and Guided tissue regeneration (GTR) are the two techniques with the most extensive documentation of periodontal regeneration. However, these techniques offer limited potential towards regenerating the periodontal tissues. Recent surgical procedures and application of newer materials aim at greater and more predictable regeneration with the concept of tissue engineering for enhanced periodontal regeneration and functional attachment have been developed, analyzed, and employed in clinical practice

2015 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Cindy Cahaya ◽  
Sri Lelyati C Masulili

Periodontitis adalah salah satu penyakit patologis yang mempengaruhi integritas sistem periodontal yang menyebabkan kerusakan jaringan periodontal yang berlanjut pada kehilangan gigi. Beberapa tahun belakangan ini banyak ketertarikan untuk melakukan usaha regenerasi jaringan periodontal, tidak saja untuk menghentikan proses perjalanan penyakit namun juga mengembalikan jaringan periodontal yang telah hilang. Sasaran dari terapi regeneratif periodontal adalah menggantikan tulang, sementum dan ligamentum periodontal pada permukaan gigi yang terkena penyakit. Prosedur regenerasi antara lain berupa soft tissue graft, bone graft, biomodifikasi akar gigi, guided tissue regeneration sertakombinasi prosedur-prosedur di atas, termasuk prosedur bedah restoratif yang berhubungan dengan rehabilitasi oral dengan penempatan dental implan. Pada tingkat selular, regenerasi periodontal adalah proses kompleks yang membutuhkan proliferasi yang terorganisasi, differensiasi dan pengembangan berbagai tipe sel untuk membentuk perlekatan periodontal. Rasionalisasi penggunaan guided tissue regeneration sebagai membran pembatas adalah menahan epitel dan gingiva jaringan pendukung, sebagai barrier membrane mempertahankan ruang dan gigi serta menstabilkan bekuan darah. Pada makalah ini akan dibahas sekilas mengenai 1. Proses penyembuhan terapi periodontal meliputi regenerasi, repair ataupun pembentukan perlekatan baru. 2. Periodontal spesific tissue engineering. 3. Berbagai jenis membran/guided tissue regeneration yang beredar di pasaran dengan keuntungan dan kerugian sekaligus karakteristik masing-masing membran. 4. Perkembangan membran terbaru sebagai terapi regenerasi penyakit periodontal. Tujuan penulisan untuk memberi gambaran masa depan mengenai terapi regenerasi yang menjanjikan sebagai perkembangan terapi penyakit periodontal. Latest Development of Guided Tissue Regeneration and Guided Bone Regeneration Membrane as Regenerative Therapy on Periodontal Tissue. Periodontitis is a patological state which influences the integrity of periodontal system that could lead to the destruction of the periodontal tissue and end up with tooth loss. Currently, there are so many researches and efforts to regenerate periodontal tissue, not only to stop the process of the disease but also to reconstruct the periodontal tissue. Periodontal regenerative therapy aims at directing the growth of new bone, cementum and periodontal ligament on the affected teeth. Regenerative procedures consist of soft tissue graft, bone graft, roots biomodification, guided tissue regeneration and combination of the procedures, including restorative surgical procedure that is connected with oral rehabilitation with implant placement. At cellular phase, periodontal regeneration is a complex process with well-organized proliferation, distinction, and development of various type of cell to form attachment of periodontal tissue. Rationalization of the use of guided tissue regeneration as barrier membrane is to prohibit the penetration of epithelial and connective tissue migration into the defect, to maintain space, and to stabilize the clot. This research discusses: 1. Healing process on periodontal therapy including regeneration, repair or formation of new attachment. 2. Periodontal specific tissue engineering. 3. Various commercially available membrane/guided tissue regeneration in the market with its advantages and disadvantages and their characteristics. 4. Recent advancement of membrane as regenerative therapy on periodontal disease. In addition, this review is presented to give an outlook for promising regenerative therapy as a part of developing knowledge and skills to treat periodontal disease.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4802
Author(s):  
Min Guk Kim ◽  
Chan Ho Park

The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.


2020 ◽  
Vol 5 (5) ◽  
pp. 28-34
Author(s):  
Olena J. Kordiyak ◽  

Chronic periodontitis is a common dental disease, resulting in destruction of gingival tissue, periodontal ligament, cementum, alveolar bone and, consequently- teeth loss in the adult population. Experimental animal models have enabled the study of periodontal disease pathogenesis and are used to test new therapeutic approaches for treating the disease The purpose of this review study was to draw the evidence from animal models, required for future assessment of destructional and regenerative processes in periodontal tissues. Material and methods: a rat experimental periodontitis models of ligature, streptozotocin, and immune complexes induced periodontitis, periodontal defect, altered functional loading, stress exposures and surgically created chronic acid reflux esophagitis models. Histomorphomorphological/-metrical, immunohisto (-cyto)chemical and histopathological analysis, micro-computed tomography, scanning and transmission electron microscopy, polarizing light and confocal microscopy, spectrophotometry, radiographic and biomechanical analysis, descriptive histology and computer-assisted image analysis. Results and discussion. Scaling and root planing may not always be effective in preventing periodontal disease progression, and, moreover, with currently available therapies, full regeneration of lost periodontal tissues after periodontitis cannot be achieved. However, in 70.5% of the results of experimental studies reported, irrespective of the defect type and animal model used, beneficial outcome for periodontal regeneration after periodontal ligament stem cell implantation, including new bone, new cementum and new connective tissue formation, was recorded. Therefore, platelet-rich fibrin combined with rat periodontal ligament stem cells provides a useful instrument for periodontal tissue engineering. Conclusion. There is sufficient evidence from preclinical animal studies suggesting that periodontal tissue engineering would provide a valuable tool for periodontal regeneration. Further elaboration of the developed in preclinical studies experimental techniques should justify progress to clinical studies and subsequent medical application


2019 ◽  
Vol 20 (18) ◽  
pp. 4364 ◽  
Author(s):  
Chan Ho Park

Currently, various tissue engineering strategies have been developed for multiple tissue regeneration and integrative structure formations as well as single tissue formation in musculoskeletal complexes. In particular, the regeneration of periodontal tissues or tooth-supportive structures is still challenging to spatiotemporally compartmentalize PCL (poly-ε-caprolactone)-cementum constructs with micron-scaled interfaces, integrative tissue (or cementum) formations with optimal dimensions along the tooth-root surfaces, and specific orientations of engineered periodontal ligaments (PDLs). Here, we discuss current advanced approaches to spatiotemporally control PDL orientations with specific angulations and to regenerate cementum layers on the tooth-root surfaces with Sharpey’s fiber anchorages for state-of-the-art periodontal tissue engineering.


2013 ◽  
Vol 16 (1) ◽  
pp. 7-11 ◽  
Author(s):  
A. Pejcic ◽  
D. Kojovic ◽  
D. Mirkovic ◽  
I. Minic

Abstract Periodontal regeneration is considered to be biologically possible but clinically unpredictable. In periodontitis, inflammation manifests clinically as loss of supporting periodontal tissues and regeneration of damaged tissue is the main goal of treatment. For decades, periodontists have sought to repair the damage through a variety of surgical procedures, and use of grafting materials and growth factors, and of barrier membranes. Reports have emerged that demonstrate which populations of adult stem cells reside in the periodontal ligaments of humans and other animals. This opens the way for new cell-based therapies for perio-dontal regeneration. This review provides an overview of adult human stem cells and their potential use in perio-dontal regeneration.


2006 ◽  
Vol 77 (6) ◽  
pp. 976-982 ◽  
Author(s):  
Patricia F. Gonçalves ◽  
Bruno C.V. Gurgel ◽  
Suzana P. Pimentel ◽  
Enilson A. Sallum ◽  
Antonio W. Sallum ◽  
...  

2021 ◽  
Vol 8 (12) ◽  
pp. 202
Author(s):  
Nancy M. S. Hussein ◽  
Josie L. Meade ◽  
Hemant Pandit ◽  
Elena Jones ◽  
Reem El-Gendy

Periodontitis and diabetes mellitus (DM) are two of the most common and challenging health problems worldwide and they affect each other mutually and adversely. Current periodontal therapies have unpredictable outcome in diabetic patients. Periodontal tissue engineering is a challenging but promising approach that aims at restoring periodontal tissues using one or all of the following: stem cells, signalling molecules and scaffolds. Mesenchymal stem cells (MSCs) and insulin-like growth factor (IGF) represent ideal examples of stem cells and signalling molecules. This review outlines the most recent updates in characterizing MSCs isolated from diabetics to fully understand why diabetics are more prone to periodontitis that theoretically reflect the impaired regenerative capabilities of their native stem cells. This characterisation is of utmost importance to enhance autologous stem cells based tissue regeneration in diabetic patients using both MSCs and members of IGF axis.


2021 ◽  
Vol 10 (3) ◽  
pp. 2871-2873
Author(s):  
Manish Dev Sejwal

Untreated periodontal disease destroys the attachment apparatus and tooth supporting tissues, resulting in tooth loss. Periodontal treatment aims to stop the progression of periodontal disease while also regenerating periodontal tissues that have been lost due to periodontal disease. Periodontal regeneration appears to occur after treatment with autogenous bone grafts, according to data from clinical and histological research. Because it contains cells that engage in osteogenesis, autogenous bone possesses osteogenic potential. Autografts are also bioabsorbable (they are eventually replaced by the patient's own bone), nonallergenic (they produce little tissue reaction without an immunological reaction), simple to utilize, and inexpensive. Around autogenous bone graft particles, rapid revascularization occurs, and the graft can release growth and differentiation agents. When compared to open flap debridement, autogenous cancellous bone from the jaw is not suited for repairing intrabony periodontal abnormalities. An autogenous cortical bone (ACB) graft derived from the surgical site close to the intraosseous defect is beneficial because it eliminates the requirement for a second surgical site for repairing intraosseous periodontal deficiencies. For tissue regeneration, many therapeutic techniques are employed. Various grafting materials, such as autografts, allografts, xenografts, and alloplasts, have been used and therapeutically utilized among them. A case report on periodontal regeneration employing autogenous bone in the treatment of a periodontal intra-bony defect in the lower left molars is presented in this study.


Sign in / Sign up

Export Citation Format

Share Document