scholarly journals Thermodynamic Solution Properties of a Biodegradable Chelant (L-glutamic-N,N-diacetic Acid, L-GLDA) and Its Sequestering Ability toward Cd2+

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7087
Author(s):  
Clemente Bretti ◽  
Roberto Di Pietro ◽  
Paola Cardiano ◽  
Olivia Gomez-Laserna ◽  
Anna Irto ◽  
...  

The thermodynamics of the interaction of L-glutamic-N,N-diacetic acid (GLDA) with protons was studied potentiometrically at different temperatures, ionic strengths and ionic media. Four protonation constants and corresponding enthalpy changes occurred at infinite dilution together with temperature and ionic strength coefficients. The medium effect was also interpreted in terms of the formation of weak complexes between the ligand and the cations of supporting electrolytes, resulting in a greater tendency of GLDA to chemically interact with Na+ rather than K+ and, in turn, (CH3)4N+. Formation constants of GLDA with Cd2+ were determined in NaCl(aq) at different ionic strength values. Five complex species were found, namely CdL2−, CdHL−, CdH2L0(aq), Cd2L0(aq), and Cd(OH)L3−, whose formation constant values at infinite dilution were log β = 12.68, 17.61, 20.76, 17.52, and 1.77, respectively. All the species results were relevant in the pH range of natural waters, although the Cd2L0(aq) was observed only for CCd ≥ CGLDA and concentrations of >0.1 mmol dm−3. The sequestering ability of GLDA toward Cd2+, evaluated by means of pL0.5, was maximum at pH~10, whereas the presence of a chloride containing a supporting electrolyte exerted a negative effect. Among new generation biodegradable ligands, GLDA was the most efficient in Cd2+ sequestration.

1996 ◽  
Vol 49 (6) ◽  
pp. 651 ◽  
Author(s):  
JS Solis ◽  
PM May ◽  
G Hefter

The heats (enthalpy changes) associated with the ionization of water and of hydrogen cyanide have been determined by titration calorimetry at 25�C as a function of ionic strength up to 5 M in both NaCl and NaClO4 media. The enthalpy changes for both reactions exhibit a 'medium effect' with ?H being more positive in NaCl than in NaClO4 and with the difference becoming more pronounced with increasing ionic strength. This is attributed to the greater solvation of Cl- cf. CN- in aqueous solution. The present ?H values are similar to previous published results at high ionic strengths, and are in excellent agreement with the well established literature values at infinite dilution. The present ?H values were combined with literature stability constant data to calculate the corresponding entropies for the ionization of H2O and HCN as a function of ionic strength.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 511 ◽  
Author(s):  
Francesco Crea ◽  
Concetta De Stefano ◽  
Anna Irto ◽  
Gabriele Lando ◽  
Stefano Materazzi ◽  
...  

The interactions of epinephrine ((R)-(−)-3,4-dihydroxy-α-(methylaminomethyl)benzyl alcohol; Eph−) with different toxic cations (methylmercury(II): CH3Hg+; dimethyltin(IV): (CH3)2Sn2+; dioxouranium(VI): UO22+) were studied in NaClaq at different ionic strengths and at T = 298.15 K (T = 310.15 K for (CH3)2Sn2+). The enthalpy changes for the protonation of epinephrine and its complex formation with UO22+ were also determined using isoperibolic titration calorimetry: ΔHHL = −39 ± 1 kJ mol−1, ΔHH2L = −67 ± 1 kJ mol−1 (overall reaction), ΔHML = −26 ± 4 kJ mol−1, and ΔHM2L2(OH)2 = 39 ± 2 kJ mol−1. The results were that UO22+ complexation by Eph− was an entropy-driven process. The dependence on the ionic strength of protonation and the complex formation constants was modeled using the extended Debye–Hückel, specific ion interaction theory (SIT), and Pitzer approaches. The sequestering ability of adrenaline toward the investigated cations was evaluated using the calculation of pL0.5 parameters. The sequestering ability trend resulted in the following: UO22+ >> (CH3)2Sn2+ > CH3Hg+. For example, at I = 0.15 mol dm−3 and pH = 7.4 (pH = 9.5 for CH3Hg+), pL0.5 = 7.68, 5.64, and 2.40 for UO22+, (CH3)2Sn2+, and CH3Hg+, respectively. Here, the pH is with respect to ionic strength in terms of sequestration.


2018 ◽  
Vol 9 (1) ◽  
pp. 49-56
Author(s):  
Ahmed Hosny Naggar ◽  
Hammed Mohammed Al-Saidi ◽  
Othman Abd El-Moaty Farghaly ◽  
Taher Mohammed Hassan ◽  
Salma Zaidan Mohamed Bortata

The formation constants of Li(I), Mg(II), Sr(II), Ca(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Ba(II), Pb(II), Al(III), Cr(III), Fe(III) and Th(IV) ions with ambroxol hydrochloride (AMB) were calculated using the half-n value. In presence of 0.1 M NaNO3, metal ions such as Zn(II), Cd(II), Ni(II), Cr(III), Li(I), Mg(II) and Al(III) forms three types of metal-ligand complexes (1:1, 1:2 and/or 1:3), while Sr(II) and Co(II) tend to form two types of metal complexes 1:1 and 1:2 (M:L). For ligand protonation constants, two logarithmic association constant values were calculated by the half-n method and are 10.7 and 7.6, respectively. The effect of ionic strength on stability constant of AMP, with different metal ions viz. Fe(III), Th(IV), Al(III), Cr(III) and Cu(II) was studied. Based on relationship between the ionic strength studied values and the 1st stability constants (Log K1H), we can conclude that the stability constants of the formed metal-ligand complex (1:1) were decreased as the ionic strength increased. The stoichiometry of the formed complexes in solution were determined by conductometric method and it is found to be of 1:1, 1:2 and/or 1:3 (M:L) complex species is formed in alkaline media. Also, study the species distribution diagrams of AMP for the calculated mole fraction αML and αML2 were discussed.


2001 ◽  
Vol 79 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Catherine Morlay ◽  
Yolande Mouginot ◽  
Monique Cromer ◽  
Olivier Vittori

The possible removal of copper(II), nickel(II), or lead(II) by an insoluble crosslinked poly(acrylic acid) was investigated in dilute aqueous solution. The binding properties of the polymer were examined at pH = 6.0 or 4.0 with an ionic strength of the medium µ = 0.1 or 1.0 M (NaNO3) using differential pulse polarography as an investigation means. The highest complexing capacity of the polyacid was obtained with lead(II) at pH = 6.0 with µ = 0.1 M, 4.8 mmol Pb(II)/g polymer. The conditional stability constants of the complex species formed were determined using the method proposed by Ruzic assuming that only the 1:1 complex species was formed; for lead(II) at pH = 6.0 and µ = 0.1 M, log K' = 5.3 ± 0.2. It appeared that the binding properties of the polymer increased, depending on the metal ion, in the following order: Ni(II) < Cu(II) < Pb(II). The complexing capacity and log K' values decreased with the pH or with an increase of the ionic strength. These results were in agreement with the conclusions of our previous studies of the hydrosoluble linear analogues. Finally, with the insoluble polymer, the log K' values were comparable to those previously obtained with the linear analogue whereas the complexing capacity values expressed in mmol g-1 were slightly lower.Key words: insoluble crosslinked poly(acrylic acid), copper(II), nickel(II), and lead(II) complexation.


1980 ◽  
Vol 35 (9) ◽  
pp. 1096-1103 ◽  
Author(s):  
Matthias Kretschmer ◽  
Lutwin Labouvie ◽  
Karl-W. Quirin ◽  
Helmut Wiehn ◽  
Ludwig Heck

Acidity constants of ammine complexes of tetravalent platinum in aqueous solutions have been determined by a spectrophotometric method at very low ionic strengths and extrapolated to zero ionic strength. Temperature variations of pK-values (25 °C and 50 °C) yield thermodynamic parameters for two successive deprotonation steps of hexaammineplatinum(IV), pentaamminechloroplatinum(IV), and tris(ethylenediamine)pla- tinum(IV) complexes and for the deprotonation of pentaammineaquacobalt(III) ion.The enthalpy changes for the first and second steps are similar and range from 50 to 75 kJ/mole while for the aqua ligand of Co(III) 33 kJ/mole are found. The very large dif­ference in the entropy changes (about 70 to 80 J/K mole for the first step and -10 to + 20 J/K mole for the second step) is interpreted by a model of solvation change. The primary hydration sphere of strongly oriented and immobilized water dipoles around the highly charged complex cation is transformed to a hydrogen-bonded solvation sheath when the electric field of the complex is weakened upon release of the first proton.


1972 ◽  
Vol 50 (10) ◽  
pp. 1609-1611
Author(s):  
R. K. Mehta ◽  
R K Gupta

Protonation constants of N-salicylideneanthranilic acid and formation constants of its Cu(II) and Zn(II)complexes have been studied potentiometrically in 50% dioxane (vol/vol) solutions (μ = 0.1 sodium perchlorate) at 30 ± 0.2 °C. The color changes observed during titrations have been related to the formation of different complex species in solution. The formation constants are in fair agreement with the Irving and Williams rule.


1966 ◽  
Vol 19 (8) ◽  
pp. 1343 ◽  
Author(s):  
TM Florence

In concentrated chloride media, nickel is reduced at far more positive potentials than in dilute solutions. The positive shift in half-wave potential increases as the ionic strength is raised, and is also greater when the cation of the supporting electrolyte has a high hydration number. Evidence is presented to show that the reduction in overpotential is due to the formation of a nickel chloride complex, [Ni(H2O)5Cl]+, which has a stoicheiometric stability constant of 0.094 � 0.009 at an ionic strength of 10.0. Spectrophotometric results show that this nickel species is not formed in low ionic strength solutions. In anhydrous methanol saturated with lithium chloride, nickel is present as the tetrachloro complex, [NiCl,]2-, which has similar polarographic behaviour to the monochloro complex. Current-potential curves recorded at a rotated pyrolytic graphite electrode enabled the behaviour of nickel to be studied in the absence of specific adsorption of the chloride ion. Nickel is reduced at more positive potentials at a dropping mercury electrode than at the pyrolytic graphite electrode, and the results indicate that this difference is due to specific adsorption of chloride on the mercury electrode.


Sign in / Sign up

Export Citation Format

Share Document