scholarly journals Nitro Fatty Acids (NO2-FAs): An Emerging Class of Bioactive Fatty Acids

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7536
Author(s):  
Giorgos S. Koutoulogenis ◽  
George Kokotos

Unsaturated nitro fatty acids (NO2-FAs) constitute a category of molecules that may be formed endogenously by the reaction of unsaturated fatty acids (UFAs) with secondary species of nitrogen monoxide and nitrite anions. The warhead of NO2-FAs is a nitroalkene moiety, which is a potent Michael acceptor and can undergo nucleophilic attack from thiol groups of biologically relevant proteins, showcasing the value of these molecules regarding their therapeutic potential against many diseases. In general, NO2-FAs inhibit nuclear factorκ-B (NF-κB), and simultaneously they activate nuclear factor (erythroid derived)-like 2 (Nrf2), which activates an antioxidant signaling pathway. NO2-FAs can be synthesized not only endogenously in the organism, but in a synthetic laboratory as well, either by a step-by-step synthesis or by a direct nitration of UFAs. The step-by-step synthesis requires specific precursor compounds and is in position to afford the desired NO2-FAs with a certain position of the nitro group. On the contrary, the direct nitration of UFAs is not a selective methodology; thus, it affords a mixture of all possible nitro isomers.

Diabetes ◽  
2006 ◽  
Vol 55 (11) ◽  
pp. 3121-3126 ◽  
Author(s):  
K. Staiger ◽  
H. Staiger ◽  
C. Weigert ◽  
C. Haas ◽  
H.-U. Haring ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Matthias Piesche ◽  
Jessica Roos ◽  
Benjamin Kühn ◽  
Jasmin Fettel ◽  
Nadine Hellmuth ◽  
...  

2016 ◽  
Vol 310 (8) ◽  
pp. F697-F704 ◽  
Author(s):  
Weidong Wang ◽  
Chunling Li ◽  
Tianxin Yang

Nitrated derivatives of unsaturated fatty acids are endogenously formed under oxidative and nitrative stress condition and are defined as electrophilic fatty acids containing a nitro group to a carbon-carbon double bond. Among the most studied nitro derivatives of unsaturated fatty acids are nitro-oleic acid (OA-NO2) and nitro-linoleic acid (LNO2). These products exhibit novel protective actions in a variety of rodent disease models. Diverse signaling events are responsible for effects of nitrated fatty acid, including activating peroxisome proliferator-activated receptor-dependent gene expression, suppressing NF-κB-induced inflammation, inhibiting oxidative stress, and increasing both endothelial nitric oxide synthase- and Nrf2-dependent gene regulation. Nitrated fatty acids have been emerging not only as a unique class of signaling molecules produced endogenously and but also as multipotent modulators of cell signaling pathways in cardiovascular and renal diseases. In this review, we discuss biochemical properties of nitrated fatty acid and its signaling pathways in the modulation of cellular events. A major focus is to review recent knowledge of nitrated fatty acid on the treatment of kidney diseases and its therapeutic potential for inflammation and metabolic disorders, with special emphasis on acute kidney injury and diabetic kidney disease.


2004 ◽  
Vol 279 (23) ◽  
pp. 23942-23952 ◽  
Author(s):  
Cora Weigert ◽  
Katrin Brodbeck ◽  
Harald Staiger ◽  
Christiana Kausch ◽  
Fausto Machicao ◽  
...  

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
E Rozema ◽  
N Fakhrudin ◽  
A Atanasov ◽  
D Schuster ◽  
E Heiss ◽  
...  

2020 ◽  
Vol 20 (2) ◽  
pp. 38-40
Author(s):  
A. Levitsky ◽  
A. Lapinska ◽  
I. Selivanskaya

The article analyzes the role of essential polyunsaturated fatty acids (PUFA), especially omega-3 series in humans and animals. The biosynthesis of essential PUFA in humans and animals is very limited, so they must be consumed with food (feed). Тhe ratio of omega-3 and omega-6 PUFA is very important. Biomembranes of animal cells contain about 30% PUFA with a ratio of ω-6/ ω-3 1-2. As this ratio increases, the physicochemical properties of biomembranes and the functional activity of their receptors change. The regulatory function of essential PUFA is that in the body under the action of oxygenase enzymes (cyclooxygenase, lipoxygenase) are formed extremely active hormone-like substances (eicosanoids and docosanoids), which affect a number of physiological processes: inflammation, immunity, metabolism. Moreover, ω-6 PUFA form eicosanoids, which have pro-inflammatory, immunosuppressive properties, and ω-3 PUFAs form eicosanoids and docosanoids, which have anti-inflammatory and immunostimulatory properties. Deficiency of essential PUFA, and especially ω-3 PUFA, leads to impaired development of the body and its state of health, which are manifestations of avitaminosis F. Prevention and treatment of avitaminosis F is carried out with drugs that contain PUFA. To create new, more effective vitamin F preparations, it is necessary to reproduce the model of vitamin F deficiency. An experimental model of vitamin F deficiency in white rats kept on a fat –free diet with the addition of coconut oil, which is almost completely free of unsaturated fatty acids, and saturated fatty acids make up almost 99 % of all fatty acids was developed. The total content of ω-6 PUFA (sum of linoleic and arachidonic acids), the content of ω-3 PUFA (α-linolenic, eicosapentaenoic and docosahexaenoic acids) in neutral lipids (triglycerides and cholesterol esters) defined. Тhe content of ω-6 PUFA under the influence of coconut oil decreased by 3.3 times, and the content of ω-3 PUFA - by 7.5 times. Тhe influence of coconut oil, the content of ω-6 PUFA decreased by 2.1 times, and the content of ω-3 PUFA - by 2.8 times. The most strongly reduces the content of ω-3 PUFA, namely eicosapentaenoic, coconut oil, starting from 5 %. Consumption of FFD with a content of 15 % coconut oil reduces the content of eicosapentaenoic acid to zero, ie we have an absolute deficiency of one of the most important essential PUFAs, which determined the presence of vitamin F deficiency.


Author(s):  
Sula M. V. Feleti ◽  
Renê L. Aleluia ◽  
Suiany V. Gervásio ◽  
Jean Carlos V. Dutra ◽  
Jessica R. P. Oliveira ◽  
...  

The study was designed to investigate the chemical composition and the biological effects of G. parviflora and V. polyanthes ethanolic extracts in vitro. Total content of phenols, flavonoids and tannins was quantified by spectrophotometry; chemical characterization was permed by mass spectrometry (ESI (-) FT-ICR MS and APCI (+) FT-ICR MS analysis). Antioxidant activities were determined by FRAP and Fe2+ chelating methods. Extracts cytotoxicity was evaluated in human lymphocytes, sarcoma-180 (S-180) and human gastric adenocarcinoma (AGS) cells, by MTT assay. V. polyanthes presented higher total content of tannins and G. parviflora presented higher amount of phenols and flavonoids. Chemical characterization showed the presence of flavonoids, phenolic acids and sesquiterpene lactones in V. polyanthes extract, and steroids, phenolic acids and fatty acids (Poly Unsaturated Fatty Acids - PUFA) in G. parviflora extract. V. polyanthes extract stood out in the Fe2+ chelation test. G. parviflora extract did not present outstanding antioxidant results in the tested protocols. Both species showed a tendency to promote cytotoxicity in human lymphocyte cells. Regarding the antiproliferative effect, both species were able to reduce S-180 cell viability and G. parviflora extract showed high antiproliferative potential in the assay with AGS cells. These findings reinforce the medicinal use of these plants, as well as suggest their potential use for the development of new drugs and for the treatment of cancers.


Sign in / Sign up

Export Citation Format

Share Document