scholarly journals Novel Bispidine-Monoterpene Conjugates—Synthesis and Application as Ligands for the Catalytic Ethylation of Chalcones

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7539
Author(s):  
Evgeniy V. Suslov ◽  
Konstantin Y. Ponomarev ◽  
Oxana S. Patrusheva ◽  
Sergey O. Kuranov ◽  
Alina A. Okhina ◽  
...  

A number of new chiral bispidines containing monoterpenoid fragments have been obtained. The bispidines were studied as ligands for Ni-catalyzed addition of diethylzinc to chalcones. The conditions for chromatographic analysis by HPLC-UV were developed, in which the peaks of the enantiomers of all synthesized chiral products were separated, which made it possible to determine the enantiomeric excess of the resulting mixture. It was demonstrated that bispidine-monoterpenoid conjugates can be used as the ligands for diethylzinc addition to chalcone C=C double bond but not as inducers of chirality. Besides products of ethylation, formation of products of formal hydrogenation of the chalcone C=C double bond was observed in all cases. Note, that this formation of hydrogenation products in significant amounts in the presence of such catalytic systems was found for the first time. A tentative scheme explaining the formation of all products was proposed.

2020 ◽  
Vol 16 (5) ◽  
pp. 606-610
Author(s):  
Nguyen T. Diep ◽  
Luu D. Huy

Background: Vietnam currently imports up to 90% of the pharmaceuticals it consumes and 100% of the steroid-based pharmaceuticals. The ability for efficient chemical synthesis of the steroids could create commercial opportunities to address this issue. Synthesis of 21-acetoxypregna-1,4,9(11)- triene-17α,21-diol-3,20-dione is considered a key intermediate in the scheme of steroidal drug synthesis. Previous synthesis attempts of such steroids (corticoids) introduce a double bond at C-1(2) in the final stage of synthesis, which delivers a poor yield and reduces the economic efficiency of the process. Objective: To study and develop a novel and effective method for the synthesis of 21-acetoxypregna- 1,4,9(11)-triene-17α,21-diol-3,20-dione. Methods: Using 9α-hydroxyandrostenedione as a substrate chemical synthesis was performed as follows: pregnane side chain construction at C-17 (acetylene method), introduction of C-1(2) double bond (using SeO2), epimerization of C-17 (via 17-ONO2 ester) and Stork’s iodination. Results: 21-acetoxypregna-1,4,9(11)-triene-17α,21-diol-3,20-dione was prepared from 9α- hydroxyandrostenedione with an improved yield compared to previous attempts. Conclusion: Here, 21-acetoxypregna-1,4,9(11)-triene-17α,21-diol-3,20-dione has been synthesized from 9α-hydroxyandrostenedione based on a novel, effective and commercially feasible scheme. The introduction of the C-1(2) double bond at an earlier stage of the synthesis has increased the economic efficiency of the entire process. For the first time, the indirect epimerization mechanism has been clarified along with the configuration of the C-17 stereo-center which has been confirmed using NOESY data.


2021 ◽  
Author(s):  
Kurtulus Eryilmaz ◽  
Benan KILBAS

Abstract Backround: To the best of our knowledge, manually production of [177Lu]Lu-FAPI radiopharmaceutical derivatives has been only described in literature. In this work, a fully-automated [177Lu]Lu-FAPI synthesis has been well designed for the first time using commercially available synthesis module. In addition to the development of an automated system with disposable cassette, quality control (QC) and stability studies were comprehensively employed. Results A fully automated synthesis of [177Lu]Lu-FAPI derivatives was achieved on the Modular Lab Eazy (ML Eazy) with high radiochemical yield (85–90%). Chromatographic analysis indicated the formation of radiosynthesis with an absolute radiochemical purity (99%). Stability experiments clarified the durability of the products within 4 days. All obtained specifications are consistent to European Pharmacopoeia. Conclusion A fully automated synthesis of [177Lu]Lu-FAPI radiopharmaceuticals were accomplished regarding quality control standards and quality assurance by using commercially available a modular approach namely ML Eazy with disposable customized cassette and template.


Author(s):  
Shaimaa El-Fayyoumy ◽  
Matthew H Todd ◽  
Christopher J Richards

Small molecule asymmetric catalysts are often described as being “good” or “bad” but to date there has been no way of comparing catalyst efficiency quantitatively. We define a simple formula, Asymmetric Catalyst Efficiency (ACE), that allows for such a comparison. We propose that a catalyst is more efficient if fewer atoms are utilised to give a product in a required enantiomeric excess. We illustrate this concept by analysing several well-known asymmetric catalytic chemical reactions carried out in academic laboratories, and compare small molecule catalysts with enzymes. We conclude that ACE is a useful descriptor for the comparison of diverse catalytic systems. It is also noteworthy that, despite the relatively short period of investigation into small molecule catalysts, they are competitive with enzymes with regards to this measure of catalytic efficiency.


Synthesis ◽  
2020 ◽  
Vol 52 (22) ◽  
pp. 3446-3451
Author(s):  
Songlin Zhang ◽  
Dengbing Xie ◽  
Yiqiong Wang ◽  
Bo Yang

The carbon–carbon double bond formation via neodymium-mediated Barbier-type reaction of ketones and allyl halides in the presence of diethyl phosphite is reported for the first time. The reaction is highly α-regioselective and was conveniently carried out under mild conditions in a one-pot fashion. From a synthetic point of view, a series of conjugated alkenes were obtained in moderate to good yields in this one-pot reaction with feasible reaction conditions.


Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 34 ◽  
Author(s):  
Genoveffa Nuzzo ◽  
Simone Landi ◽  
Nunzia Esercizio ◽  
Emiliano Manzo ◽  
Angelo Fontana ◽  
...  

The industrial production of lactic acid (LA) is mainly based on bacterial fermentation. This process can result in enantiopure or racemic mixture according to the producing organism. Between the enantiomers, L-lactic acid shows superior market value. Recently, we reported a novel anaplerotic pathway called capnophilic lactic fermentation (CLF) that produces a high concentration of LA by fermentation of sugar in the anaerobic thermophilic bacterium Thermotoga neapolitana. The aim of this work was the identification of the enantiomeric characterization of the LA produced by T. neapolitana and identification of the lactate dehydrogenase in T. neapolitana (TnLDH) and related bacteria of the order Thermotogales. Chemical derivatization and GC/MS analysis were applied to define the stereochemistry of LA from T. neapolitana. A bioinformatics study on TnLDH was carried out for the characterization of the enzyme. Chemical analysis showed a 95.2% enantiomeric excess of L-LA produced by T. neapolitana. A phylogenetic approach clearly clustered the TnLDH together with the L-LDH from lactic acid bacteria. We report for the first time that T. neapolitana is able to produce almost enantiopure L-lactic acid. The result was confirmed by bioinformatics analysis on TnLDH, which is a member of the L-LDH sub-family.


Synlett ◽  
2020 ◽  
Vol 31 (09) ◽  
pp. 856-860
Author(s):  
Laurent El Kaïm ◽  
Mansour Dolé Kerim ◽  
Pakoupati Boyode ◽  
Julian Garrec

We report for the first time a metal-free addition of boronic acids to silylnitronates to afford oxime derivatives through aryl transfer on the carbon nitrogen double bond. A reaction mechanism has been proposed in relation with a DFT study on the key aryl transfer. This arylation process is effective for cycloalkenyl nitro derivatives leading to oximes that may be oxidatively converted into 3-arylisoxazole derivatives.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1259
Author(s):  
Marta Puche ◽  
Rocío García-Aboal ◽  
Maxim A. Mikhaylov ◽  
Maxim N. Sokolov ◽  
Pedro Atienzar ◽  
...  

Catalytic properties of the cluster compound (TBA)2[Mo6Ii8(O2CCH3)a6] (TBA = tetrabutylammonium) and a new hybrid material (TBA)2Mo6Ii8@GO (GO = graphene oxide) in water photoreduction into molecular hydrogen were investigated. New hybrid material (TBA)2Mo6Ii8@GO was prepared by coordinative immobilization of the (TBA)2[Mo6Ii8(O2CCH3)a6] onto GO sheets and characterized by spectroscopic, analytical, and morphological techniques. Liquid and, for the first time, gas phase conditions were chosen for catalytic experiments under UV–Vis irradiation. In liquid water, optimal H2 production yields were obtained after using (TBA)2[Mo6Ii8(O2CCH3)a6] and (TBA)2Mo6Ii8@GO) catalysts after 5 h of irradiation of liquid water. Despite these remarkable catalytic performances, “liquid-phase” catalytic systems have serious drawbacks: the cluster anion evolves to less active cluster species with partial hydrolytic decomposition, and the nanocomposite completely decays in the process. Vapor water photoreduction showed lower catalytic performance but offers more advantages in terms of cluster stability, even after longer radiation exposure times and recyclability of both catalysts. The turnover frequency (TOF) of (TBA)2Mo6Ii8@GO is three times higher than that of the microcrystalline (TBA)2[Mo6Ii8(O2CCH3)a6], in agreement with the better accessibility of catalytic cluster sites for water molecules in the gas phase. This bodes well for the possibility of creating {Mo6I8}4+-based materials as catalysts in hydrogen production technology from water vapor.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Sana Kordoghli ◽  
Maria Paraschiv ◽  
Mohand Tazerout ◽  
Besma Khiari ◽  
Fethi Zagrouba

In this paper, catalyzed pyrolysis of scrap tires was studied in order to identify the influence of catalysts on gas composition during the main thermal range of the decomposition process. The aim is related to gas fraction optimization in terms of yield, composition, and distribution during the pyrolysis process. This is an original work using for the first time powder catalysts (MgO, Al2O3, CaCO3, and zeolite ZSM-5) uniformly distributed on a single layer of oyster shells (OSs) particles. The catalyst/tires mass ratio was kept for all the tests at 1/30. Depending on used catalyst, pyrolysis products yields ranged from 39 to 42 wt.% for char, from 26 to 38 wt.% for oils, and from 16 to 30 wt.% for gas. Compared to the thermal pyrolysis, it was found that the liquid yield increases in the presence of MgO/OS, while the use of Al2O3/OS decreases it significantly. The gas yield grows in the presence of Al2O3/OS ranging from 24.6 wt.% (thermal pyrolysis) to 30.6 wt.%. On the other hand, ZSM-5/OS and CaCO3/OS did not bring significant changes in products yield, but there are considerable influences on the evolution of gas composition during the tires decomposition. Also, two important advantages of using these new catalytic systems are identified. These relate to the formation of gaseous species throughout the waste decomposition, thus harmonizing the calorific value for the entire thermal range, and the disappearance of heavy molecules in liquid fractions, simplifying or canceling further upgrading processes.


2015 ◽  
Vol 51 (56) ◽  
pp. 11272-11275 ◽  
Author(s):  
Nora C. Breit ◽  
Tibor Szilvási ◽  
Shigeyoshi Inoue
Keyword(s):  

Coordination of a zwitterionic phosphasilene to tungsten significantly weakens its SiP bond, so rotation and E/Z-isomerization of a SiP bond were observed for the first time.


Sign in / Sign up

Export Citation Format

Share Document