scholarly journals Rosmanol and Carnosol Synergistically Alleviate Rheumatoid Arthritis through Inhibiting TLR4/NF-κB/MAPK Pathway

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 78
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Callicarpa longissima has been used as a Yao folk medicine to treat arthritis for years in China, although its active anti-arthritic moieties have not been clarified so far. In this study, two natural phenolic diterpenoids with anti-rheumatoid arthritis (RA) effects, rosmanol and carnosol, isolated from the medicinal plant were reported on for the first time. In type II collagen-induced arthritis DBA/1 mice, both rosmanol (40 mg/kg/d) and carnosol (40 mg/kg/d) alone alleviated the RA symptoms, such as swelling, redness, and synovitis; decreased the arthritis index score; and downregulated the serum pro-inflammatory cytokine levels of interleukin 6 (IL-6), monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor α (TNF-α). Additionally, they blocked the activation of the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)/c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways. Of particular interest was that when they were used in combination (20 mg/kg/d each), the anti-RA effect and inhibitory activity on the TLR4/NF-κB/MAPK pathway were significantly enhanced. The results demonstrated that rosmanol and carnosol synergistically alleviated RA by inhibiting inflammation through regulating the TLR4/NF-κB/MAPK pathway, meaning they have the potential to be developed into novel, safe natural combinations for the treatment of RA.

2017 ◽  
Vol 43 (2) ◽  
pp. 540-552 ◽  
Author(s):  
Hany H. Arab ◽  
Samir A. Salama ◽  
Tamer M. Abdelghany ◽  
Hany A. Omar ◽  
El-Shaimaa A. Arafa ◽  
...  

Background/Aims: Camel milk (CM) has shown beneficial anti-inflammatory actions in several experimental and clinical settings. So far, its effect on rheumatoid arthritis (RA) has not been previously explored. Thus, the current work aimed to evaluate the effects of CM in Adjuvant-induced arthritis and air pouch edema models in rats, which mimic human RA. Methods: CM was administered at 10 ml/kg orally for 3 weeks starting on the day of Freund’s adjuvant paw inoculation. The levels of TNF-α and IL-10 were measured by ELISA while the protein expression of NF-κBp65, COX-2 and iNOS was detected by immunohistochemistry. The expression of MAPK target proteins was assessed by Western blotting. Results: CM attenuated paw edema, arthritic index and gait score along with dorsal pouch inflammatory cell migration. CM lowered the TNF-α and augmented the anti-inflammatory IL-10 levels in sera and exudates of arthritic rats. It also attenuated the expression of activated NF-κBp65, COX-2 and iNOS in the lining of the dorsal pouch. Notably, CM inhibited the MAPK pathway signal transduction via lowering the phosphorylation of p38 MAPK, ERK1/2 and JNK1/2 in rat hind paws. Additionally, CM administration lowered the lipid peroxide and nitric oxide levels and boosted glutathione and total anti-oxidant capacity in sera and exudates of animals. Conclusion: The observed CM downregulation of the arthritic process may support the interest of CM consumption as an adjunct approach for the management of RA.


2009 ◽  
Vol 421 (3) ◽  
pp. 473-482 ◽  
Author(s):  
Bärbel Schröfelbauer ◽  
Johanna Raffetseder ◽  
Maria Hauner ◽  
Andrea Wolkerstorfer ◽  
Wolfgang Ernst ◽  
...  

The triterpene glycoside glycyrrhizin is the main active compound in liquorice. It is used as a herbal medicine owing to its anticancer, antiviral and anti-inflammatory properties. Its mode of action, however, remains widely unknown. In the present study, we aimed to elucidate the molecular mechanism of glycyrrhizin in attenuating inflammatory responses in macrophages. Using microarray analysis, we found that glycyrrhizin caused a broad block in the induction of pro-inflammatory mediators induced by the TLR (Toll-like receptor) 9 agonist CpG-DNA in RAW 264.7 cells. Furthermore, we found that glycyrrhizin also strongly attenuated inflammatory responses induced by TLR3 and TLR4 ligands. The inhibition was accompanied by decreased activation not only of the NF-κB (nuclear factor κB) pathway but also of the parallel MAPK (mitogen-activated protein kinase) signalling cascade upon stimulation with TLR9 and TLR4 agonists. Further analysis of upstream events revealed that glycyrrhizin treatment decreased cellular attachment and/or uptake of CpG-DNA and strongly impaired TLR4 internalization. Moreover, we found that the anti-inflammatory effects were specific for membrane-dependent receptor-mediated stimuli, as glycyrrhizin was ineffective in blocking Tnfa (tumour necrosis factor α gene) induction upon stimulation with PMA, a receptor- and membrane-independent stimulus. These observations suggest that the broad anti-inflammatory activity of glycyrrhizin is mediated by the interaction with the lipid bilayer, thereby attenuating receptor-mediated signalling.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Miki Torigoe ◽  
Yoko Obata ◽  
Hiro Inoue ◽  
Kenta Torigoe ◽  
Akira Kinoshita ◽  
...  

Abstract Background and Aims Anti-glomerular basement membrane (GBM) glomerulonephritis (GN), characterized by glomerular crescent formation, requires early treatment because of poor prognosis. Hydroxychloroquine (HCQ) is a well-known antimalarial drug. In addition, it has immunomodulatory, anti-inflammatory, and autophagy inhibitory effects and its recognized in the treatment of autoimmune disease such as SLE. However, its effect for anti-GBM GN is unknown. In this study, we investigated the effect of HCQ against anti-GBM GN in rats. Method 7 week old male, WKY rats were induced by the administration of anti-GBM serum (50μg/rat). We administered either HCQ (50mg/kg) or vehicle (Phosphate-buffered saline) from day 0 to day 7 after the induction of nephritis. Renal function was assessed by measuring serum creatinine, proteinuria, hematuria. Urine was collected for 24 hours on day 1, 3, 5, and 7. Rats were sacrificed on day 7 after induction of anti-GBM GN. Renal histological changes were assessed by PAS staining, and Masson trichrome stain, and macrophage was assessed by ED-1 stain. Mitogen-Activated Protein Kinase (MAPK) was evaluated by western blotting (WB) and inflammatory cytokines were evaluated by ELISA using urine. Results HCQ treatment suppressed renal function decline. Histologically, extracellular and intracellular cells were increased from day 1, fibrinoid necrosis and ED-1 positive cells were observed from day 3. Rats with anti-GBM GN had high levels of interferon-α, interleukin-6, monocyte chemotactic protein-1, and tumor necrosis factor-α. These changes were significantly suppressed by HCQ. In addition, HCQ suppressed phosphorylation of JNK/p38 MAPK. Conclusion Our study showed that HCQ could attenuate anti-GBM GN and have an anti-inflammatory effect by inhibiting JNK/p38 MAPK activation. HCQ may have therapeutic potential in anti-GBM GN.


2018 ◽  
Vol 6 (4) ◽  
pp. 362-378
Author(s):  
Yanyan Xu ◽  
Hanan Slimani

Neisseria meningitidis is a Gram-negative bacterium emerging the leading cause of bacterial meningitis in children and young adult wide world. The host innate immune response against meningitis is largely unknown. In this study, we show that N.meningitidis robustly activates mRNA and protein expression of tumor necrosis factor (TNF-α) and interleukin (IL-6) in murine bone marrow-derived PMN. Toll-like receptor (TLR-2) and myeloid differentiation primary response gene 88 (MyD88), N.meningitidis also activates the mitogen-activated protein kinase (MAPKs; c-Jun N-terminal kinase (JNK), ERK1/2 and p38 MAPK) pathway. N.meningitidis-induced TNF-α and IL-6 production was dependent on JNK activation. The intracellular reactive oxygen species (ROS), NADPH oxidase-2, and nuclear factor-κB are required for N.meningitides-induced proinflammatory cytokine generation in PMN. Together, we have demonstrated that N.meningitidis-induced activation of host proinflammatory cytokines is mediated through TLR2-dependent JNK signaling pathways.


2021 ◽  
Vol 30 (4) ◽  
pp. 583-588
Author(s):  
Ha-Nul Lee ◽  
Joo-Hee Choi ◽  
Ji-Yeon Park ◽  
Jae-Hun Ahn ◽  
Da Eun Jang ◽  
...  

AbstractVegetable soup (VS), a plant-based functional food, has been used as a traditional folk medicine and is attracting attention for its ability to enhance the immune response. β-Glucan, a well-established and effective immunomodulator, has synergistic effects when used in combination with some bioactive compounds. In the present study, we aimed to evaluate the synergistic immunomodulatory effects of the combination of VS and β-glucan on macrophage-mediated immune responses. β-Glucan was demonstrated to synergistically enhance the VS-stimulated immune response, including the production of interleukin-6, tumor necrosis factor-α, and nitric oxide, mainly through the mitogen-activated protein kinase pathway in macrophages. In addition, this combination has the potential for further development in functional foods with immune-enhancing activity.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1589 ◽  
Author(s):  
Sung ◽  
Kwon ◽  
Um ◽  
Kim

Rheumatoid arthritis (RA) is a chronic, systemic, joint-invading, autoimmune inflammatory disease, which causes joint cartilage breakdown and bone damage, resulting in functional impairment and deformation of the joints. The percentage of RA patients has been rising and RA represents a substantial burden for patients around the world. Despite the development of many RA therapies, because of the side effects and low effectiveness of conventional drugs, patients still need and researchers are seeking new therapeutic alternatives. Polyphenols extracted from natural products are effective on several inflammatory diseases, including RA. In this review polyphenols are classified into four types: flavonoids, phenolic acids, stilbenes and others, among which mainly flavonoids are discussed. Researchers have reported that anti-RA efficacies of polyphenols are based mainly on three mechanisms: their anti-inflammatory, antioxidant and apoptotic properties. The main RA factors modified by polyphenols are mitogen-activated protein kinase (MAPK), interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), nuclear factor κ light chain enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinases (JNK). Polyphenols could be potent alternative RA therapies and sources for novel drugs for RA by affecting its key mechanisms.


2006 ◽  
Vol 203 (7) ◽  
pp. 1651-1656 ◽  
Author(s):  
Hidetoshi Sumimoto ◽  
Fumie Imabayashi ◽  
Tomoko Iwata ◽  
Yutaka Kawakami

The mitogen-activated protein kinase (MAPK) pathway is frequently activated in human cancers, leading to malignant phenotypes such as autonomous cellular proliferation. Here, we demonstrate a novel role of the activated MAPK pathway in immune evasion by melanoma cells with the mutation of BRAF, which encodes a MAPKKs, (BRAFV600E). MEK inhibitor U0126 or RNA interference (RNAi) for BRAFV600E decreased production of the immunosuppressive soluble factors interleukin (IL)-10, VEGF, or IL-6 from melanoma cells to levels comparable to those after signal transducer and activator of transcription (STAT)3 inactivation. The suppressive activity of the culture supernatants from the melanoma cells on the production of inflammatory cytokines IL-12 and tumor necrosis factor α by dendritic cells upon lipopolysaccharide stimulation was markedly reduced after transduction with BRAFV600E RNAi, comparable to the effects observed with STAT3 RNAi transduction. No additive or synergistic effects were observed by the simultaneous transduction of RNAi for both BRAFV600E and STAT3. Furthermore, specific DNA binding and transcriptional activity of STAT3 were not affected by down-regulation of the MAPK signaling with the BRAF RNAi. These results indicate that the MAPK signal, along with the STAT3 signal, is essential for immune evasion by human melanomas that have constitutively active MAPK signaling and is a potential molecular target for overcoming melanoma cell evasion of the immune system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaochen Chen ◽  
Haofeng Lin ◽  
Jinyang Chen ◽  
Lisheng Wu ◽  
Junqing Zhu ◽  
...  

Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). It is urgent to develop new drugs that can effectively inhibit the abnormal activation of RA-FLS. In our study, the RA-FLS cell line, MH7A, and mice with collagen-induced arthritis (CIA) were used to evaluate the effect of paclitaxel (PTX). Based on the results, PTX inhibited the migration of RA-FLS in a dose-dependent manner and significantly reduced the spontaneous expression of IL-6, IL-8, and RANKL mRNA and TNF-α-induced transcription of the IL-1β, IL-8, MMP-8, and MMP-9 genes. However, PTX had no significant effect on apoptosis in RA-FLS. Mechanistic studies revealed that PTX significantly inhibited the TNF-α-induced phosphorylation of ERK1/2 and JNK in the mitogen-activated protein kinase (MAPK) pathway and suppressed the TNF-α-induced activation of AKT, p70S6K, 4EBP1, and HIF-1α in the AKT/mTOR pathway. Moreover, PTX alleviated synovitis and bone destruction in CIA mice. In conclusion, PTX inhibits the migration and inflammatory mediator production of RA-FLS by targeting the MAPK and AKT/mTOR signaling pathways, which provides an experimental basis for the potential application in the treatment of RA.


Sign in / Sign up

Export Citation Format

Share Document