inflammatory mediator production
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 17)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Li Zhou ◽  
Li-Fei Zheng ◽  
Xiao-Li Zhang ◽  
Zhi-Yong Wang ◽  
Yuan-Sheng Yao ◽  
...  

The cholinergic anti-inflammatory pathway (CAIP) has been proposed to regulate gastrointestinal inflammation via acetylcholine released from the vagus nerve activating α7 nicotinic receptor (α7nAChR) on macrophages. Parkinson’s disease (PD) patients and PD rats with substantia nigra (SN) lesions exhibit gastroparesis and a decayed vagal pathway. To investigate whether activating α7nAChR could ameliorate inflammation and gastric dysmotility in PD rats, ELISA, western blot analysis, and real-time PCR were used to detect gastric inflammation. In vitro and in vivo gastric motility was investigated. Proinflammatory mediator levels and macrophage numbers were increased in the gastric muscularis of PD rats. α7nAChR was located on the gastric muscular macrophages of PD rats. The α7nAChR agonists PNU-282987 and GTS-21 decreased nuclear factor κB (NF-κB) activation and monocyte chemotactic protein-1 mRNA expression in the ex vivo gastric muscularis of PD rats, and these effects were abolished by an α7nAChR antagonist. After treatment with PNU-282987 in vivo, the PD rats showed decreased NF-κB activation, inflammatory mediator production, and contractile protein expression and improved gastric motility. The present study reveals that α7nAChR is involved in the development of gastroparesis in PD rats and provides novel insight for the treatment of gastric dysmotility in PD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaochen Chen ◽  
Haofeng Lin ◽  
Jinyang Chen ◽  
Lisheng Wu ◽  
Junqing Zhu ◽  
...  

Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). It is urgent to develop new drugs that can effectively inhibit the abnormal activation of RA-FLS. In our study, the RA-FLS cell line, MH7A, and mice with collagen-induced arthritis (CIA) were used to evaluate the effect of paclitaxel (PTX). Based on the results, PTX inhibited the migration of RA-FLS in a dose-dependent manner and significantly reduced the spontaneous expression of IL-6, IL-8, and RANKL mRNA and TNF-α-induced transcription of the IL-1β, IL-8, MMP-8, and MMP-9 genes. However, PTX had no significant effect on apoptosis in RA-FLS. Mechanistic studies revealed that PTX significantly inhibited the TNF-α-induced phosphorylation of ERK1/2 and JNK in the mitogen-activated protein kinase (MAPK) pathway and suppressed the TNF-α-induced activation of AKT, p70S6K, 4EBP1, and HIF-1α in the AKT/mTOR pathway. Moreover, PTX alleviated synovitis and bone destruction in CIA mice. In conclusion, PTX inhibits the migration and inflammatory mediator production of RA-FLS by targeting the MAPK and AKT/mTOR signaling pathways, which provides an experimental basis for the potential application in the treatment of RA.


2021 ◽  
Vol 22 (15) ◽  
pp. 7856
Author(s):  
Sang Min Lee ◽  
Kyung-No Son ◽  
Dhara Shah ◽  
Marwan Ali ◽  
Arun Balasubramaniam ◽  
...  

Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 834
Author(s):  
Carsten C. F. Walker ◽  
Jill L. Brester ◽  
Lorraine M. Sordillo

Dysfunctional inflammation contributes significantly to the pathogenesis of coliform mastitis and the classical pro-inflammatory enzyme cyclooxygenase-2 (COX-2) is the target of medical intervention using the non-steroidal anti-inflammatory drug (NSAID) flunixin meglumine (FM). Inhibition of COX-2 by FM can decrease concentrations of pro-inflammatory fatty acid-based mediators called eicosanoids, providing antipyretic and analgesic effects in dairy cows suffering from coliform mastitis. However, approximately 50% of naturally occurring coliform mastitis with systemic involvement results in death of the animal, even with NSAID treatment. Inadequate antioxidant potential (AOP) to neutralize reactive oxygen species (ROS) produced during excessive inflammation allows for oxidative stress (OS), contributing to tissue damage during coliform mastitis. Biomarkers of lipid peroxidation by ROS, called isoprostanes (IsoP), were used in humans and cattle to quantify the extent of OS. Blood IsoP were shown to be elevated and correlate with oxidant status during acute coliform mastitis. However, the effect of FM treatment on oxidant status and markers of OS has not been established. Blood IsoP concentrations were used to quantify systemic OS, whereas milk was used to assess local OS in the mammary gland. Results indicate that FM treatment had no effect on blood markers of inflammation but reduced the oxidant status index (OSi) by increasing blood AOP from pre- to post-FM treatment. Milk AOP significantly increased from pre- to post-FM treatment, whereas ROS decreased, resulting in a decreased OSi from pre- to post-FM treatment. The only blood IsoP concentration that was significantly different was 5-iso-iPF2α-VI, with a decreased concentration from pre- to post-FM treatment. Conversely, milk 5-iso-iPF2α-VI, 8,12-iso-iPF2α-VI, and total IsoP concentrations were decreased following FM treatment. These results indicated that administration of FM did improve systemic and local oxidant status and reduced local markers of OS. However, differential effects were observed between those animals that survived the infection and those that died, indicating that pre-existing inflammation and oxidant status greatly affect efficacy of FM and may be the key to reducing severity and mortality associated with acute coliform infections. Supplementation to improve AOP and anti-inflammatory mediator production may significantly improve efficacy of FM treatment.


2021 ◽  
Author(s):  
Megan L. Falsetta ◽  
Ronald W. Wood ◽  
Mitchell A. Linder ◽  
Adrienne D. Bonham ◽  
Kenneth V. Honn ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masatoshi Okura ◽  
Jean-Philippe Auger ◽  
Tomoyuki Shibahara ◽  
Guillaume Goyette-Desjardins ◽  
Marie-Rose Van Calsteren ◽  
...  

AbstractThe capsular polysaccharide (CPS) of Streptococcus suis defines various serotypes based on its composition and structure. Though serotype switching has been suggested to occur between S. suis strains, its impact on pathogenicity and virulence remains unknown. Herein, we experimentally generated S. suis serotype-switched mutants from a serotype 2 strain that express the serotype 3, 4, 7, 8, 9, or 14 CPS. The effects of serotype switching were then investigated with regards to classical properties conferred by presence of the serotype 2 CPS, including adhesion to/invasion of epithelial cells, resistance to phagocytosis by macrophages, killing by whole blood, dendritic cell-derived pro-inflammatory mediator production and virulence using mouse and porcine infection models. Results demonstrated that these properties on host cell interactions were differentially modulated depending on the switched serotypes, although some different mutations other than loci of CPS-related genes were found in each the serotype-switched mutant. Among the serotype-switched mutants, the mutant expressing the serotype 8 CPS was hyper-virulent, whereas mutants expressing the serotype 3 or 4 CPSs had reduced virulence. By contrast, switching to serotype 7, 9, or 14 CPSs had little to no effect. These findings suggest that serotype switching can drastically alter S. suis virulence and host cell interactions.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yoshitaka Hosokawa ◽  
Ikuko Hosokawa ◽  
Kazumi Ozaki ◽  
Takashi Matsuo

Sudachitin, which is a polymethoxylated flavonoid found in the peel of Citrus sudachi, has some biological activities. However, the effect of sudachitin on periodontal resident cells is still uncertain. The aim of this study was to examine if sudachitin could decrease the expression of inflammatory mediators such as cytokines, chemokines, or matrix metalloproteinase (MMP) in interleukin- (IL-) 1β-stimulated human periodontal ligament cells (HPDLC). Sudachitin inhibited IL-1β-induced IL-6, IL-8, CXC chemokine ligand (CXCL)10, CC chemokine ligand (CCL)2, MMP-1, and MMP-3 production in HPDLC. On the other hand, tissue inhibitor of metalloproteinase- (TIMP-) 1 expression was increased by sudachitin treatment. Moreover, we found that the nuclear factor- (NF-) κB and protein kinase B (Akt) pathways in the IL-1β-stimulated HPDLC were inhibited by sudachitin treatment. These findings indicate that sudachitin is able to reduce inflammatory mediator production in IL-1β-stimulated HPDLC by inhibiting NF-κB and Akt pathways.


2020 ◽  
Vol 21 (17) ◽  
pp. 6327
Author(s):  
Chang-Hsun Ho ◽  
Pei-Yi Chu ◽  
Shin-Lei Peng ◽  
Shun-Chih Huang ◽  
Yu-Hsin Lin

The aim of this study was to develop a macrophage-targeted nanoparticle composed of hyaluronan/fucoidan complexes with polyethylene glycol-gelatin to encapsulate and deliver epigallocatechin-3-gallate (EGCG), a compound that can regulate macrophage activation and pro-inflammatory mediator production. We show that our nanoparticles can successfully bond to macrophages and deliver more EGCG than an EGCG solution treatment, confirming the anti-inflammatory effects of these nanoparticles in lipopolysaccharide-stimulated macrophages. The prepared nanoparticles were established with a small mean particle size (217.00 ± 14.00 nm), an acceptable polydispersity index (0.28 ± 0.07), an acceptable zeta potential value (−33.60 ± 1.30 mV), and a high EGCG loading efficiency (52.08% ± 5.37%). The targeting abilities of CD44 binding were increased as the hyaluronan concentration increased and decreased by adding a competitor CD44 antibody. Moreover, we found that fucoidan treatment significantly reduced macrophage migration after lipopolysaccharide treatment in a dose-responsive manner. In summary, we successfully created macrophage-targeted nanoparticles for effective targeted delivery of EGCG, which should aid in the development of future anti-inflammatory drugs against macrophage-related diseases.


Sign in / Sign up

Export Citation Format

Share Document