scholarly journals Implementing Complementary Approaches to Shape the Mechanism of α-Synuclein Oligomerization as a Model of Amyloid Aggregation

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 88
Author(s):  
Marco Giampà ◽  
María J. Amundarain ◽  
Maria Georgina Herrera ◽  
Nicolò Tonali ◽  
Veronica I. Dodero

The aggregation of proteins into amyloid fibers is linked to more than forty still incurable cellular and neurodegenerative diseases such as Parkinson’s disease (PD), multiple system atrophy, Alzheimer’s disease and type 2 diabetes, among others. The process of amyloid formation is a main feature of cell degeneration and disease pathogenesis. Despite being methodologically challenging, a complete understanding of the molecular mechanism of aggregation, especially in the early stages, is essential to find new biological targets for innovative therapies. Here, we reviewed selected examples on α-syn showing how complementary approaches, which employ different biophysical techniques and models, can better deal with a comprehensive study of amyloid aggregation. In addition to the monomer aggregation and conformational transition hypothesis, we reported new emerging theories regarding the self-aggregation of α-syn, such as the alpha-helix rich tetramer hypothesis, whose destabilization induce monomer aggregation; and the liquid-liquid phase separation hypothesis, which considers a phase separation of α-syn into liquid droplets as a primary event towards the evolution to aggregates. The final aim of this review is to show how multimodal methodologies provide a complete portrait of α-syn oligomerization and can be successfully extended to other protein aggregation diseases.

Author(s):  
Yanting Xing ◽  
Aparna Nandakumar ◽  
Aleksandr Kakinen ◽  
Yunxiang Sun ◽  
Thomas P. Davis ◽  
...  

2021 ◽  
Author(s):  
Yanxian Zhang ◽  
Yonglan Liu ◽  
Yijing Tang ◽  
Dong Zhang ◽  
Huacheng He ◽  
...  

Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer’s (AD), type II diabetes (T2D), Parkinson’s diseases (PD), and medullary thyroid carcinoma (MTC)....


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2371
Author(s):  
Valeria Guarrasi ◽  
Giacoma Cinzia Rappa ◽  
Maria Assunta Costa ◽  
Fabio Librizzi ◽  
Marco Raimondo ◽  
...  

Waste valorization represents one of the main social challenges when promoting a circular economy and environmental sustainability. Here, we evaluated the effect of the polyphenols extracted from apple peels, normally disposed of as waste, on the amyloid aggregation process of κ-casein from bovine milk, a well-used amyloidogenic model system. The effect of the apple peel extract on protein aggregation was examined using a thioflavin T fluorescence assay, Congo red binding assay, circular dichroism, light scattering, and atomic force microscopy. We found that the phenolic extract from the peel of apples of the cultivar “Fuji”, cultivated in Sicily (Caltavuturo, Italy), inhibited κ-casein fibril formation in a dose-dependent way. In particular, we found that the extract significantly reduced the protein aggregation rate and inhibited the secondary structure reorganization that accompanies κ-casein amyloid formation. Protein-aggregated species resulting from the incubation of κ-casein in the presence of polyphenols under amyloid aggregation conditions were reduced in number and different in morphology.


2020 ◽  
Author(s):  
Yunpeng Sun ◽  
Kun Zhao ◽  
Wencheng Xia ◽  
Jinge Gu ◽  
Yeyang Ma ◽  
...  

AbstractHuman heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) serves as a key regulating protein in RNA metabolism. Malfunction of hnRNPA1 in nucleo-cytoplasmic transport or dynamic phase separation leads to abnormal amyloid aggregation and neurodegeneration. The low complexity (LC) domain of hnRNPA1 drives both dynamic phase separation and amyloid aggregation. Here, we use cryo-electron microscopy to determine the amyloid fibril structure formed by hnRNPA1 LC domain. Remarkably, the structure reveals that the nuclear localization sequence of hnRNPA1 (termed PY-NLS), which is initially known to mediate the nucleo-cytoplamic transport of hnRNPA1 through binding with karyopherin-β2 (Kapβ2), represents the major component of the fibril core. The residues that contribute to the binding of PY-NLS with Kapβ2 also exert key molecular interactions to stabilize the fibril structure. Notably, hnRNPA1 mutations found in familial amyotrophic lateral sclerosis (ALS) and multisystem proteinopathoy (MSP) are all involved in the fibril core and contribute to fibril stability. Our work illuminate structural understandings on the pathological amyloid aggregation of hnRNPA1 and the amyloid disaggregase activity of Kapβ2, and highlights the multiple roles of PY-NLS in hnRNPA1 homeostasis.


2020 ◽  
Vol 117 (27) ◽  
pp. 15650-15658 ◽  
Author(s):  
Ibraheem Alshareedah ◽  
Mahdi Muhammad Moosa ◽  
Muralikrishna Raju ◽  
Davit A. Potoyan ◽  
Priya R. Banerjee

Liquid−liquid phase separation of multivalent intrinsically disordered protein−RNA complexes is ubiquitous in both natural and biomimetic systems. So far, isotropic liquid droplets are the most commonly observed topology of RNA−protein condensates in experiments and simulations. Here, by systematically studying the phase behavior of RNA−protein complexes across varied mixture compositions, we report a hollow vesicle-like condensate phase of nucleoprotein assemblies that is distinct from RNA−protein droplets. We show that these vesicular condensates are stable at specific mixture compositions and concentration regimes within the phase diagram and are formed through the phase separation of anisotropic protein−RNA complexes. Similar to membranes composed of amphiphilic lipids, these nucleoprotein−RNA vesicular membranes exhibit local ordering, size-dependent permeability, and selective encapsulation capacity without sacrificing their dynamic formation and dissolution in response to physicochemical stimuli. Our findings suggest that protein−RNA complexes can robustly create lipid-free vesicle-like enclosures by phase separation.


2020 ◽  
Vol 56 (78) ◽  
pp. 11577-11580
Author(s):  
Rosario Oliva ◽  
Sanjib K. Mukherjee ◽  
Zamira Fetahaj ◽  
Simone Möbitz ◽  
Roland Winter

Protein/RNA droplet formation by liquid–liquid phase separation has emerged as a key mechanism for cellular organization. We show that binding of antimicrobial peptides such as LL-III can lead to loss of droplet function.


2019 ◽  
Author(s):  
Soumik Ray ◽  
Nitu Singh ◽  
Satyaprakash Pandey ◽  
Rakesh Kumar ◽  
Laxmikant Gadhe ◽  
...  

SUMMARYα-Synuclein (α-Syn) aggregation and amyloid formation is directly linked with Parkinson’s disease (PD) pathogenesis. However, the early events involved in this process remain unclear. Here, using in vitro reconstitution and cellular model, we show that liquid-liquid phase separation (LLPS) of α-Syn precedes its aggregation. In particular, in vitro generated α-Syn liquid-like droplets eventually undergo a liquid-to-solid transition and form amyloid-hydrogel containing oligomers and fibrillar species. Factors known to aggravate α-Syn aggregation such as low pH, phosphomimic substitution, and familial PD mutation also promote α-Syn LLPS and its subsequent maturation. We further demonstrate α-Syn liquid droplet formation in cells, under oxidative stress. These cellular α-Syn droplets eventually transform into perinuclear aggresomes, the process regulated by microtubules. The present work provides detailed insights into the phase separation behavior of natively unstructured α-Syn and its conversion to a disease-associated aggregated state, which is highly relevant in PD pathogenesis.


2019 ◽  
Author(s):  
Clara Sidor ◽  
Nerea Borreguero-Munoz ◽  
Georgina C Fletcher ◽  
Ahmed Elbediwy ◽  
Hannah Vanyai ◽  
...  

AbstractThe Mask family of multiple ankyrin repeat and KH domain proteins were discovered in Drosophila to promote the activity of the transcriptional coactivator Yorkie (Yki), the sole fly homolog of mammalian YAP (YAP1) and TAZ (WWTR1). The molecular function of Mask, or its mammalian homologs Mask1 (ANKHD1) and Mask2 (ANKRD17), remains unclear. Mask family proteins contain two Ankyrin repeat domains that bind Yki/YAP as well as a conserved nuclear localisation sequence (NLS) and nuclear export sequence (NES), suggesting a role in nucleo-cytoplasmic transport. Here we show that Mask acts to promote nuclear import of Yki, and that addition of an ectopic NLS to Yki is sufficient to bypass the requirement for Mask in Yki-driven tissue growth. Mammalian Mask1/2 proteins also promote nuclear import of YAP, as well as stabilising YAP and driving colloidal phase separation into large liquid droplets. Mask1/2 and YAP normally colocalise in a granular fashion in both nucleus and cytoplasm, and are co-regulated during mechanotransduction. Our results suggest that Mask family proteins promote YAP nuclear import and phase separation to regulate YAP stability and transcriptional activity.


2021 ◽  
Vol 22 (21) ◽  
pp. 11455
Author(s):  
Emma Lorentzon ◽  
Istvan Horvath ◽  
Ranjeet Kumar ◽  
Joana Isabel Rodrigues ◽  
Markus J. Tamás ◽  
...  

Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegenerative disorders such as Parkinson’s disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson’s disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson’s disease.


Sign in / Sign up

Export Citation Format

Share Document