scholarly journals Module-Designed Carbon-Coated Separators for High-Loading, High-Sulfur-Utilization Cathodes in Lithium–Sulfur Batteries

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 228
Author(s):  
Yi-Chen Huang ◽  
Yin-Ju Yen ◽  
Yu-Hsun Tseng ◽  
Sheng-Heng Chung

Lithium–sulfur batteries have great potential as next-generation energy-storage devices because of their high theoretical charge-storage capacity and the low cost of the sulfur cathode. To accelerate the development of lithium–sulfur technology, it is necessary to address the intrinsic material and extrinsic technological challenges brought about by the insulating active solid-state materials and the soluble active liquid-state materials. Herein, we report a systematic investigation of module-designed carbon-coated separators, where the carbon coating layer on the polypropylene membrane decreases the irreversible loss of dissolved polysulfides and increases the reaction kinetics of the high-loading sulfur cathode. Eight different conductive carbon coatings were considered to investigate how the materials’ characteristics contribute to the lithium–sulfur cell’s cathode performance. The cell with a nonporous-carbon-coated separator delivered an optimized peak capacity of 1112 mA∙h g−1 at a cycling rate of C/10 and retained a high reversible capacity of 710 mA∙h g−1 after 200 cycles under lean-electrolyte conditions. Moreover, we demonstrate the practical high specific capacity of the cathode and its commercial potential, achieving high sulfur loading and content of 4.0 mg cm−2 and 70 wt%, respectively, and attaining high areal and gravimetric capacities of 4.45 mA∙h cm−2 and 778 mA∙h g−1, respectively.

2021 ◽  
Vol 10 (1) ◽  
pp. 20-33
Author(s):  
Lian Wu ◽  
Yongqiang Dai ◽  
Wei Zeng ◽  
Jintao Huang ◽  
Bing Liao ◽  
...  

Abstract Fast charge transfer and lithium-ion transport in the electrodes are necessary for high performance Li–S batteries. Herein, a N-doped carbon-coated intercalated-bentonite (Bent@C) with interlamellar ion path and 3D conductive network architecture is designed to improve the performance of Li–S batteries by expediting ion/electron transport in the cathode. The interlamellar ion pathways are constructed through inorganic/organic intercalation of bentonite. The 3D conductive networks consist of N-doped carbon, both in the interlayer and on the surface of the modified bentonite. Benefiting from the unique structure of the Bent@C, the S/Bent@C cathode exhibits a high initial capacity of 1,361 mA h g−1 at 0.2C and achieves a high reversible capacity of 618.1 m Ah g−1 at 2C after 500 cycles with a sulfur loading of 2 mg cm−2. Moreover, with a higher sulfur loading of 3.0 mg cm−2, the cathode still delivers a reversible capacity of 560.2 mA h g−1 at 0.1C after 100 cycles.


RSC Advances ◽  
2015 ◽  
Vol 5 (114) ◽  
pp. 93926-93936 ◽  
Author(s):  
Xuebing Yang ◽  
Wen Zhu ◽  
Guobao Cao ◽  
Xudong Zhao

Sulfur is a promising cathode material for lithium–sulfur batteries as it possesses high theoretical specific capacity and low cost.


RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 7159-7171 ◽  
Author(s):  
Xuebing Yang ◽  
Wen Zhu ◽  
Guobao Cao ◽  
Xudong Zhao

Sulfur is a promising cathode material for lithium batteries as it possesses high theoretical specific capacity and low cost.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dongdong Yu ◽  
Zhihong Tang ◽  
Haiyong He

Due to the high specific energy density, lithium-sulfur batteries (LSBs) have great potential in energy storage devices for electric vehicle and electronic equipment. However, poor conductivity of sulfur, large volume expansion, and lithium polysulfide dissolution limit LSBs application and promotion. In this work, graphitic hollow carbon fibers (HCF) were fabricated as a matrix to encapsulate sulfur. And nickel particles were introduced into fibers (Ni@HCF) to improve the cycle stability of sulfur cathode. On one hand, hollow structures can encapsulate sulfur and limit lithium polysulfides dissolution, and the graphitic carbon walls can provide a fast electron transport channel. On the other hand, nickel particles can accelerate the conversion of lithium polysulfides. The study results show that the initial discharge specific capacity of Ni@HCF/S cathodes reaches 1,252 mAh g−1 at the current density of 0.1C. And the capacity can be maintained at 558 mAh g−1 after 200 cycles at the current density of 1C.


Nanoscale ◽  
2019 ◽  
Vol 11 (33) ◽  
pp. 15418-15439 ◽  
Author(s):  
Fang Li ◽  
Quanhui Liu ◽  
Jiawen Hu ◽  
Yuezhan Feng ◽  
Pengbin He ◽  
...  

Li–S batteries are regarded as a promising candidate for next-generation energy storage systems due to their high specific capacity (1675 mA h g−1) and energy density (2600 W h kg−1) as well as the abundance, safety and low cost of S material.


2021 ◽  
Author(s):  
Srikanth Ponnada ◽  
Maryam Sadat Kiai ◽  
Demudu Babu Gorle ◽  
Annapurna Nowduri

Lithium–sulfur batteries, with a high specific capacity, low cost and environmental friendliness, could be investigated as a next-generation energy-storage system.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2478
Author(s):  
Chenghao Yao ◽  
Wei Li ◽  
Kang Duan ◽  
Chen Zhu ◽  
Jinze Li ◽  
...  

Lithium-sulfur (Li-S) batteries have received extensive attention due to their high theoretical specific capacity and theoretical energy density. However, their commercialization is hindered by the shuttle effect caused by the dissolution of lithium polysulfide. To solve this problem, a method is proposed to improve the performance of Li-S batteries using Ti2N(Ti2NS2) with S-functional groups as the sulfur cathode host material. The calculation results show that due to the mutual attraction between Li and S atoms, Ti2NS2 has the moderate adsorption energies for Li2Sx species, which is more advantageous than Ti2NO2 and can effectively inhibit the shuttle effect. Therefore, Ti2NS2 is a potential cathode host material, which is helpful to improve the performance of Li-S batteries. This work provides a reference for the design of high-performance sulfur cathode materials.


2018 ◽  
Vol 6 (42) ◽  
pp. 20926-20938 ◽  
Author(s):  
Yongzheng Zhang ◽  
Ruochen Wang ◽  
Weiqiang Tang ◽  
Liang Zhan ◽  
Shuangliang Zhao ◽  
...  

The GA–CNFs–Ni modified separator endows the “double high” sulfur cathode (5–10 mg cm−2, 90%) with a stable reversible capacity and superior rate performance.


Sign in / Sign up

Export Citation Format

Share Document