scholarly journals SARS-CoV-2 Multi-Antigen Serology Assay

2021 ◽  
Vol 4 (4) ◽  
pp. 72
Author(s):  
Ramin Mazhari ◽  
Shazia Ruybal-Pesántez ◽  
Fiona Angrisano ◽  
Nicholas Kiernan-Walker ◽  
Stephanie Hyslop ◽  
...  

Serology tests are extremely useful for assessing whether a person has been infected with a pathogen. Since the onset of the COVID-19 pandemic, measurement of anti-SARS-CoV-2-specific antibodies has been considered an essential tool in identifying seropositive individuals and thereby understanding the extent of transmission in communities. The Luminex system is a bead-based technology that has the capacity to assess multiple antigens simultaneously using very low sample volumes and is ideal for high-throughput studies. We have adapted this technology to develop a COVID-19 multi-antigen serological assay. This protocol described here carefully outlines recommended steps to optimize and establish this method for COVID-19-specific antibody measurement in plasma and in saliva. However, the protocol can easily be customized and thus the assay is broadly applicable to measure antibodies to other pathogens.

Author(s):  
Karen Pulford ◽  
Kevin Gatter

Immunohistology is the microscopic study of cells and tissues using specific antibodies that bind to individual molecules expressed by the cellular and non-cellular components of the tissues. This branch of science is an essential link in the analysis and interpretation of data from high throughput genomic and proteomic technologies. Its use, both in the research and in the clinical arenas, has led to an increased understanding of cancer biology. This knowledge has also resulted in improvements in diagnosis, the provision of prognostic and predictive information, and highlighted the use of appropriate treatments. Furthermore, immunohistochemistry is a critical component in the search for personalized treatments. The ongoing advances in the availability of specific validated antibodies, continued improvements in staining and image analysis, and the integration of different technologies will ensure that immunohistochemistry becomes an even more essential tool in the study of cancer biology.


Author(s):  
Karen Pulford ◽  
Kevin Gatter

Immunohistology is the microscopic study of cells and tissues using specific antibodies that bind to individual molecules expressed by the cellular and non-cellular components of the tissues. This branch of science is an essential link in the analysis and interpretation of data from high throughput genomic and proteomic technologies. Its use, both in the research and in the clinical arenas, has led to an increased understanding of cancer biology. This knowledge has also resulted in improvements in diagnosis, the provision of prognostic and predictive information, and highlighted the use of appropriate treatments. Furthermore, immunohistochemistry is a critical component in the search for personalized treatments. The ongoing advances in the availability of specific validated antibodies, continued improvements in staining and image analysis, and the integration of different technologies will ensure that immunohistochemistry becomes an even more essential tool in the study of cancer biology.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 64 ◽  
Author(s):  
Chang Liu ◽  
Wei Cai ◽  
Xin Yin ◽  
Zimin Tang ◽  
Guiping Wen ◽  
...  

Hepatitis E virus (HEV) is a common cause of acute hepatitis worldwide. Current methods for evaluating the neutralizing activity of HEV-specific antibodies include immunofluorescence focus assays (IFAs) and real-time PCR, which are insensitive and operationally complicated. Here, we developed a high-throughput neutralization assay by measuring secreted pORF2 levels using an HEV antigen enzyme-linked immunosorbent assay (ELISA) kit based on the highly replicating HEV genotype (gt) 3 strain Kernow. We evaluated the neutralizing activity of HEV-specific antibodies and the sera of vaccinated individuals (n = 15) by traditional IFA and the novel assay simultaneously. A linear regression analysis shows that there is a high degree of correlation between the two assays. Furthermore, the anti-HEV IgG levels exhibited moderate correlation with the neutralizing titers of the sera of vaccinated individuals, indicating that immunization with gt 1 can protect against gt 3 Kernow infection. We then determined specificity of the novel assay and the potential threshold of neutralizing capacity using anti-HEV IgG positive sera (n = 27) and anti-HEV IgG negative sera (n = 23). The neutralizing capacity of anti-HEV IgG positive sera was significantly stronger than that of anti-HEV IgG negative. In addition, ROC curve analysis shows that the potential threshold of neutralizing capacity of sera was 8.07, and the sensitivity and specificity of the novel assay was 88.6% and 100%, respectively. Our results suggest that the neutralization assay using the antigen ELISA kit could be a useful tool for HEV clinical research.


2020 ◽  
Author(s):  
Pradeep Darshana Pushpakumara ◽  
Chandima Jeewandara ◽  
Laksiri Gomes ◽  
Yashodha Perera ◽  
Ananda Wijewickrama ◽  
...  

AbstractBackgroundAlthough immune responses to the Japanese Encephalitis virus (JEV), and the dengue viruses (DENV) have a potential to modulate the immune responses to each other, this has been poorly investigated. Therefore, we developed an ELISA to identify JEV specific, DENV non cross-reactive antibody responses by identifying JEV specific, highly conserved regions of the virus and proceeded to investigate if the presence of JEV specific antibodies associate with dengue disease severity.Methodology/Principal findings20 JEV specific peptides were identified from highly conserved regions of the virus and the immunogenicity and specificity of these peptides were assessed in individuals who were non-immune to JEV and DENV (JEV-DENV-, N=30), those who were only immune to the JEV and not DENV (JEV+DENV-, N=30), those who were only immune to DENV(JEV-DENV+, N=30) and in those who were immune to both viruses (JEV+DENV+, N=30). 7/20 peptides were found to be highly immunogenic and specific and these 7 peptides were used as a pool to further evaluate JEV-specific responses. All 30/30 JEV+DENV-and 30/30 JEV+DENV+individuals, and only 3/30 (10%) JEV-DENV+individuals responded to this pool. We further evaluated this pool of 7 peptides in patients following primary and secondary dengue infection during the convalescent period and found that the JEV-specific peptides, were unlikely to cross react with DENV IgG antibodies. We further compared this in-house ELISA developed with the peptide pool with an existing commercial JEV IgG assay to identify JEV-specific IgG following vaccination, and our in-house ELISA was found to be more sensitive. We then proceeded to investigate if the presence of JEV-specific antibodies were associated with dengue disease severity, and we found that those who had past severe dengue (n=175) were significantly more likely (p<0.0001) to have JEV-specific antibodies than those with past non-severe dengue (n=175) (OR 5.3, 95% CI 3.3 to 8.3).Conclusions/SignificanceAs our data show that this assay is highly sensitive and specific for detection of JEV-specific antibody responses, it would be an important tool to determine how JEV seropositivity modulate dengue immunity and disease severity when undertaking dengue vaccine trials.Author summaryBoth Japanese Encephalitis virus (JEV), and the dengue viruses (DENV) co-circulate in the same geographical region and have a potential to modulate the immune responses to each other. However, due to the difficulty in identifying antibody responses specific to either virus due to the highly cross-reactive nature of virus-specific antibodies, this has been poorly investigated. Therefore, we developed an ELISA to identify JEV-specific, DENV non cross-reactive antibody responses by identifying JEV-specific, highly conserved regions of the virus and proceeded to investigate if the presence of JEV-specific antibodies associates with dengue disease severity. 20 JEV-specific peptides were identified from highly conserved regions of the virus and the immunogenicity and specificity of these peptides were assessed. We found that seven peptides were highly immunogenic and specific to the JEV and we further evaluated the usefulness of an ELISA developed using these pools of peptides. We found that our in-house ELISA was found to be significantly more sensitive some of the existing commercial assays. As this assay appears to be highly sensitive and specific for detection of JEV-specific antibody responses, it would be an important tool to determine how JEV seropositivity modulate dengue immunity and disease severity when undertaking dengue vaccine trials.


2020 ◽  
Vol 8 (9) ◽  
pp. 1426
Author(s):  
Niila Saarinen ◽  
Jussi Lehtonen ◽  
Riitta Veijola ◽  
Johanna Lempainen ◽  
Mikael Knip ◽  
...  

The authors wish to make the following corrections to this paper [...]


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 648
Author(s):  
Tatiana Kotomina ◽  
Irina Isakova-Sivak ◽  
Ki-Hye Kim ◽  
Bo Ryoung Park ◽  
Yu-Jin Jung ◽  
...  

Influenza viruses constantly evolve, reducing the overall protective effect of routine vaccination campaigns. Many different strategies are being explored to design universal influenza vaccines capable of protecting against evolutionary diverged viruses. The ectodomain of influenza A M2e protein (M2e) is among the most promising targets for universal vaccine design. Here, we generated two recombinant live attenuated influenza vaccines (LAIVs) expressing additional four M2e tandem repeats (4M2e) from the N-terminus of the viral hemagglutinin (HA) protein, in an attempt to enhance the M2e-mediated cross-protection. The recombinant H1N1+4M2e and H3N2+4M2e viruses retained growth characteristics attributable to traditional LAIV viruses and induced robust influenza-specific antibody responses in BALB/c mice, although M2e-specific antibodies were raised only after two-dose vaccination with LAIV+4M2e viruses. Mice immunized with either LAIV or LAIV+4M2e viruses were fully protected against a panel of heterologous influenza challenge viruses suggesting that antibody and cell-mediated immunity contributed to the protection. The protective role of the M2e-specific antibody was seen in passive serum transfer experiments, where enhancement in the survival rates between classical LAIV and chimeric H3N2+4M2e LAIV was demonstrated for H3N2 and H5N1 heterologous challenge viruses. Overall, the results of our study suggest that M2e-specific antibodies induced by recombinant LAIV+4M2e in addition to cellular immunity by LAIV play an important role in conferring protection against heterologous viruses.


2002 ◽  
Vol 70 (11) ◽  
pp. 6013-6020 ◽  
Author(s):  
Jiraprapa Wipasa ◽  
Huji Xu ◽  
Morris Makobongo ◽  
Michelle Gatton ◽  
Anthony Stowers ◽  
...  

ABSTRACT Immunity induced by the 19-kDa fragment of Plasmodium yoelii merozoite surface protein 1 (MSP119) is dependent on high titers of specific antibodies present at the time of challenge and a continuing active immune response postinfection. However, the specificity of the active immune response postinfection has not been defined. In particular, it is not known whether anti-MSP119 antibodies that arise following infection alone are sufficient for protection. We developed systems to investigate whether an MSP119-specific antibody response alone both prechallenge and postchallenge is sufficient for protection. We were able to exclude antibodies with other specificities, as well as any contribution of MSP119-specific CD4+ T cells acting independent of antibody, and we concluded that an immune response focused solely on MSP119-specific antibodies is sufficient for protection. The data imply that the ability of natural infection to boost an MSP119-specific antibody response should greatly improve vaccine efficacy.


2015 ◽  
Vol 90 (2) ◽  
pp. 1116-1128 ◽  
Author(s):  
Greg A. Kirchenbaum ◽  
Donald M. Carter ◽  
Ted M. Ross

ABSTRACTBroadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus.IMPORTANCEThe influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses directed at the HA stalk region. Moreover, ferrets possessing HA stalk-specific antibody were protected against novel H1N1 virus infection and did not transmit the virus to naive contacts.


2007 ◽  
Vol 75 (9) ◽  
pp. 4456-4462 ◽  
Author(s):  
Frans N. J. Kooyman ◽  
Erik de Vries ◽  
Harm W. Ploeger ◽  
Jos P. M. van Putten

ABSTRACT Parasite N-glycans may play an important role in helminth infections. As antibodies from Dictyocaulus viviparus-infected calves strongly react with N-glycans, we investigated the characteristics of the major immunodominant glycoprotein (GP300) of this parasite. Probing of worm extracts with various lectins demonstrated unique binding of GP300 to wheat germ agglutinin. Analysis of lectin-purified GP300 revealed that the glycan was substituted with phosphorylcholine and reacted with the phosphorylcholine-specific antibody TEPC-15. Competitive enzyme-linked immunosorbent assay with GP300-coated plates and GP300-specific immunoglobulin G (IgG) in conjunction with free phosphorylcholine or TEPC-15 demonstrated that antibodies from infected calves recognized phosphorylcholine on GP300. Additional assays showed that these antibodies cross-reacted with the phosphorylcholine moiety present on platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), a proinflammatory mediator of the host. Heavily infected calves contained high levels of serum GP300-specific IgG1 but low levels of IgA and IgG2 and showed a reduced influx of eosinophils in the lungs, all consistent with a neutralization of PAF activity. In conclusion, we demonstrated that D. viviparus infection elicits GP300-specific antibodies that cross-react with PAF and may neutralize PAF function, thus limiting the development of a protective response as well as parasite-induced host pathology.


Sign in / Sign up

Export Citation Format

Share Document