scholarly journals Green-Synthesization of Silver Nanoparticles Using Endophytic Bacteria Isolated from Garlic and Its Antifungal Activity against Wheat Fusarium Head Blight Pathogen Fusarium graminearum

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 219 ◽  
Author(s):  
Ezzeldin Ibrahim ◽  
Muchen Zhang ◽  
Yang Zhang ◽  
Afsana Hossain ◽  
Wen Qiu ◽  
...  

Nanoparticles are expected to play a vital role in the management of future plant diseases, and they are expected to provide an environmentally friendly alternative to traditional synthetic fungicides. In the present study, silver nanoparticles (AgNPs) were green synthesized through the mediation by using the endophytic bacterium Pseudomonas poae strain CO, which was isolated from garlic plants (Allium sativum). Following a confirmation analysis that used UV–Vis, we examined the in vitro antifungal activity of the biosynthesized AgNPs with the size of 19.8–44.9 nm, which showed strong inhibition in the mycelium growth, spore germination, the length of the germ tubes, and the mycotoxin production of the wheat Fusarium head blight pathogen Fusarium graminearum. Furthermore, the microscopic examination showed that the morphological of mycelia had deformities and collapsed when treated with AgNPs, causing DNA and proteins to leak outside cells. The biosynthesized AgNPs with strong antifungal activity were further characterized based on analyses of X-ray diffraction, transmission electron microscopy, scanning electron microscopy, EDS profiles, and Fourier transform infrared spectroscopy. Overall, the results from this study clearly indicate that the biosynthesized AgNPs may have a great potential in protecting wheat from fungal infection.

2020 ◽  
Vol 13 (2) ◽  
pp. 235-246
Author(s):  
W.Q. Shi ◽  
L.B. Xiang ◽  
D.Z. Yu ◽  
S.J. Gong ◽  
L.J. Yang

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss in wheat and barley production. Integrated pest management (IPM) is required to control this disease and biofungicides, such as tetramycin, could be a novel addition to IPM strategies. The current study investigated in vitro tetramycin toxicity in Fusarium graminearum and evaluated its effectiveness for the control of Fusarium head blight FHB. Tetramycin was shown to affect three key aspects of Fusarium pathogenicity: spore germination, mycelium growth and deoxynivalenol (DON) production. The in vitro results indicated that tetramycin had strong inhibitory activity on the mycelial growth and spore germination. Field trials indicated that tetramycin treatment resulted in a significant reduction in both the FHB disease index and the level of DON accumulation. The reduced DON content in harvested grain was correlated with the amount of Tri5 mRNA determined by qRT-PCR. Synergistic effects between tetramycin and metconazole, in both the in vitro and field experiments were found. Tetramycin could provide an alternative option to control FHB.


Plant Disease ◽  
2021 ◽  
Author(s):  
Brian Mueller ◽  
Carol Groves ◽  
Damon L. Smith

Fusarium graminearum commonly causes Fusarium head blight (FHB) on wheat, barley, rice, and oats. Fusarium graminearum produces nivalenol and deoxynivalenol (DON) and forms derivatives of DON based on its acetylation sites. The fungus is profiled into chemotypes based on DON derivative chemotypes (3 acetyldeoxynivalenol (3ADON) chemotype; 15 acetyldeoxynivalenol (15ADON) chemotype) and/or the nivalenol (NIV) chemotype. The current study assessed the Fusarium population found on wheat and the chemotype profile of the isolates collected from 2016 and 2017 in Wisconsin. Fusarium graminearum was isolated from all locations sampled in both 2016 and 2017. Fusarium culmorum was isolated only from Door County in 2016. Over both growing seasons, 91% of isolates were identified as the 15ADON chemotype while 9% of isolates were identified as the 3ADON chemotype. Aggressiveness was quantified by area under disease progress curve (AUDPC). The isolates with the highest AUDPC values were from the highest wheat producing cropping districts in the state. Deoxynivalenol production in grain and sporulation and growth rate in vitro were compared to aggressiveness in the greenhouse. Our results showed that 3ADON isolates in Wisconsin were among the highest in sporulation capacity, growth rate, and DON production in grain. However, there were no significant differences in aggressiveness between the 3ADON and 15ADON isolates. The results of this research detail the baseline frequency and distribution of 3ADON and 15ADON chemotypes observed in Wisconsin. Chemotype distributions within populations of F. graminearum in Wisconsin should continue to be monitored in the future.


2020 ◽  
Vol 6 (4) ◽  
pp. 294
Author(s):  
Ezzeldin Ibrahim ◽  
Jinyan Luo ◽  
Temoor Ahmed ◽  
Wenge Wu ◽  
Chenqi Yan ◽  
...  

Biosynthesis of silver nanoparticles (AgNPs) using endophytic bacteria is a safe alternative to the traditional chemical method. The purpose of this research is to biosynthesize AgNPs using endophytic bacterium Bacillus endophyticus strain H3 isolated from onion. The biosynthesized AgNPs with sizes from 4.17 to 26.9 nm were confirmed and characterized by various physicochemical techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), UV-visible spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in addition to an energy dispersive spectrum (EDS) profile. The biosynthesized AgNPs at a concentration of 40 μg/mL had a strong antifungal activity against rice blast pathogen Magnaporthe oryzae with an inhibition rate of 88% in mycelial diameter. Moreover, the biosynthesized AgNPs significantly inhibited spore germination and appressorium formation of M. oryzae. Additionally, microscopic observation showed that mycelia morphology was swollen and abnormal when dealing with AgNPs. Overall, the current study revealed that AgNPs could protect rice plants against fungal infections.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 404-410 ◽  
Author(s):  
Scott L. Walker ◽  
Steven Leath ◽  
Winston M. Hagler ◽  
J. Paul Murphy

Fusarium head blight (FHB) can reduce yield of wheat and decrease the value of harvested grain by accumulation of detrimental toxins. Understanding the variability of the fungal population associated with infection could improve disease control strategies. Sixty-six isolates of Fusarium graminearum associated with FHB were collected in North Carolina and tested for in vitro growth rate, in vitro production of deoxynivalenol (DON) and zearalenone, and pathogenicity on three cultivars of soft red winter wheat. Significant differences among isolates were found for all three traits. Randomly Amplified Polymorphic DNA (RAPD) analysis revealed high levels of genotypic diversity among isolates. Isolates of F. graminearum, F. culmorum, and F. avenaceum acquired from the Pennsylvania State University Fusarium Center were included for comparison in all tests. In vivo levels of DON were measured for the five isolates associated with the highest levels of disease and the five isolates associated with the lowest levels of disease, and no significant differences were found. However, all ten isolates produced detectable levels of DON in vivo. Mean disease ratings ranged from 3.4 to 96.4%, in vitro (DON) levels ranged from 0 to 7176.2 ppm, and zearalenone ranged from 0 to 354.7 ppm, among isolates. A multiple regression model using in vitro growth, in vitro DON, and zearalenone production, collection location, wheat cultivar of isolate origin, plot, tillage conditions, and previous crop as independent variables and percent blighted tissue as the dependent variable was developed. The cumulative R2 value for the model equaled 0.27 with in vitro rate of growth making the largest contribution. Analysis of phenotype and genotype among isolates demonstrated diversity in a single plot, in a single location, and in North Carolina. Genotypic and phenotypic diversity were significant under both conventional and reduced tillage conditions, and diversity was high regardless of whether the previous crop had been a host or non-host for F. graminearum. These data indicate a variable pathogen population of F. graminearum exists in North Carolina, and members of this population can be both highly pathogenic on wheat and produce high levels of detrimental toxins, indicating a potential threat for problems with FHB within the state.


2020 ◽  
Vol 33 (7) ◽  
pp. 888-901
Author(s):  
Sean P. O’Mara ◽  
Karen Broz ◽  
Marike Boenisch ◽  
Zixuan Zhong ◽  
Yanhong Dong ◽  
...  

The plant-pathogenic fungus Fusarium graminearum, causal agent of Fusarium head blight (FHB) disease on small grain cereals, produces toxic trichothecenes that require facilitated export for full virulence. Two potential modes of mycotoxin transport are membrane-bound transporters, which move toxins across cellular membranes, and N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-mediated vesicular transport, by which toxins may be packaged as cargo in vesicles bound for organelles or the plasma membrane. In this study, we show that deletion of a gene (Sso2) for a subapically localized t-SNARE protein results in growth alteration, increased sensitivity to xenobiotics, altered gene expression profiles, and reduced deoxynivalenol (DON) accumulation in vitro and in planta as well as reduced FHB symptoms on wheat. A double deletion mutant generated by crossing the ∆sso2 deletion mutant with an ATP-binding cassette transporter deletion mutant (∆abc1) resulted in an additive reduction in DON accumulation and almost complete loss of FHB symptoms in planta. These results suggest an important role of Sso2-mediated subapical exocytosis in FHB progression and xenobiotic defense and are the first report of an additive reduction in F. graminearum DON accumulation upon deletion of two distinct modes of cellular export. This research provides useful information which may aid in formulating novel management plans of FHB or other destructive plant diseases.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 348
Author(s):  
Qian Xiu ◽  
Lianyu Bi ◽  
Haorong Xu ◽  
Tao Li ◽  
Zehua Zhou ◽  
...  

Fusarium graminearum, causal agent of Fusarium head blight (FHB), causes a huge economic loss. No information is available on the activity of quinofumelin, a novel quinoline fungicide, against F. graminearum or other phytopathogens. In this study, we used mycelial growth and spore germination inhibition methods to determine the inhibitory effect of quinofumelin against F. graminearum in vitro. The results indicated that quinofumelin excellently inhibited mycelial growth and spore germination of F. graminearum, with the average EC50 values of 0.019±0.007 μg/mL and 0.087 ± 0.024 μg/mL, respectively. In addition, we found that quinofumelin could significantly decrease deoxynivalenol (DON) production and inhibit the expression of DON-related gene TRI5 in F. graminearum. Furthermore, we found that quinofumelin could disrupt the formation of Fusarium toxinsome, a structure for producing DON. Western blot analysis demonstrated that the translation level of TRI1, a marker gene for Fusarium toxinsome, was suppressed by quinofumelin. The protective and curative assays indicated that quinofumelin had an excellent control efficiency against F. graminearum on wheat coleoptiles. Taken together, quinofumelin exhibits not only an excellent antifungal activity on mycelial growth and spore germination, but also could inhibit DON biosynthesis in F. graminearum. The findings provide a novel candidate for controlling FHB caused by F. graminearum.


2014 ◽  
Vol 104 (12) ◽  
pp. 1289-1297 ◽  
Author(s):  
Weiqun Hu ◽  
Qixun Gao ◽  
Mohamed Sobhy Hamada ◽  
Dawood Hosni Dawood ◽  
Jingwu Zheng ◽  
...  

To develop an effective biocontrol strategy for management of Fusarium head blight on wheat caused by Fusarium graminearum, the bacterial biocontrol agent Pcho10 was selected from more than 1,476 wheat-head-associated bacterial strains according to its antagonistic activity in vitro. This strain was subsequently characterized as Pseudomonas chlororaphis subsp. aurantiaca based on 16S ribosomal DNA sequence analysis, assays of the BIOLOG microbial identification system, and unique pigment production. The major antifungal metabolite produced by Pcho10 was further identified as phenazine-1-carboxamide (PCN) on the basis of nuclear magnetic resonance data. The core PCN biosynthesis gene cluster in Pcho10 was cloned and sequenced. PCN showed strong inhibitory activity against F. graminearum conidial germination, mycelial growth, and deoxynivalenol production. Tests both under growth chamber conditions and in field trials showed that Pcho10 well colonized on the wheat head and effectively controlled the disease caused by F. graminearum. Results of this study indicate that P. chlororaphis subsp. aurantiaca Pcho10 has high potential to be developed as a biocontrol agent against F. graminearum. To our knowledge, this is the first report of the use of P. chlororaphis for the management of Fusarium head blight.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 944
Author(s):  
Aftab Hossain Mondal ◽  
Dhananjay Yadav ◽  
Asghar Ali ◽  
Neelofar Khan ◽  
Jun O Jin ◽  
...  

The present study described the extracellular synthesis of silver nanoparticles (AgNPs) using environmental bacterial isolate Citrobacter spp. MS5 culture supernatant. To our best knowledge, no previous study reported the biosynthesis of AgNPs using this bacterial isolate. The biosynthesized AgNPs were characterized using different techniques like UV-Vis spectroscopy, fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy dispersive X-ray (EDX). The analysis of UV-Vis spectra revealed absorption maxima at 415 nm due to surface plasmon resonance (SPR) indicated the formation of AgNPs and FTIR spectrum confirmed the participation of proteins molecule in AgNPs synthesis. XRD and EDX spectrum confirmed the metallic and crystalline nature of AgNPs. TEM and SEM showed spherical nanoparticles with a size range of 5–15 nm. The biosynthesized AgNPs showed effective independent as well as enhanced combined antibacterial activity against extended spectrum β-lactamase (ESBL) producing multidrug resistant Gram-negative bacteria. Further, effective antifungal activity of AgNPs was observed towards pathogenic Candida spp. The present study provides evidence for eco-friendly biosynthesis of well-characterized AgNPs and their potential antibacterial as well as antifungal activity.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 419 ◽  
Author(s):  
Shreya Joshi ◽  
Savitha De Britto ◽  
Sudisha Jogaiah ◽  
Shin-ichi Ito

The current challenges of sustainable agricultural development augmented by global climate change have led to the exploration of new technologies like nanotechnology, which has potential in providing novel and improved solutions. Nanotools in the form of nanofertilizers and nanopesticides possess smart delivery mechanisms and controlled release capacity for active ingredients, thus minimizing excess run-off to water bodies. This study aimed to establish the broad spectrum antifungal activity of mycogenic selenium nanoparticles (SeNPs) synthesized from Trichoderma atroviride, and characterize the bioactive nanoparticles using UV–Vis spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and high-resolution transmission electron microscopy (HR-TEM). The synthesized nanoparticles displayed excellent in vitro antifungal activity against Pyricularia grisea and inhibited the infection of Colletotrichum capsici and Alternaria solani on chili and tomato leaves at concentrations of 50 and 100 ppm, respectively. The SEM-EDS analysis of the bioactive SeNPs revealed a spherical shape with sizes ranging from 60.48 nm to 123.16 nm. The nanoparticles also possessed the unique property of aggregating and binding to the zoospores of P. infestans at a concentration of 100 ppm, which was visualized using light microscope, atomic force microscopy, and electron microscopy. Thus, the present study highlights the practical application of SeNPs to manage plant diseases in an ecofriendly manner, due to their mycogenic synthesis and broad spectrum antifungal activity against different phytopathogens.


Sign in / Sign up

Export Citation Format

Share Document