scholarly journals Pyrene Coating Transition Metal Disulfides as Protection from Photooxidation and Environmental Aging

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 363 ◽  
Author(s):  
Ruben Canton-Vitoria ◽  
Yuman Sayed-Ahmad-Baraza ◽  
Bernard Humbert ◽  
Raul Arenal ◽  
Christopher Ewels ◽  
...  

Environmental degradation of transition metal disulfides (TMDs) is a key stumbling block in a range of applications. We show that a simple one-pot non-covalent pyrene coating process protects TMDs from both photoinduced oxidation and environmental aging. Pyrene is immobilized non-covalently on the basal plane of exfoliated MoS2 and WS2. The optical properties of TMD/pyrene are assessed via electronic absorption and fluorescence emission spectroscopy. High-resolution scanning transmission electron microscopy coupled with electron energy loss spectroscopy confirms extensive pyrene surface coverage, with density functional theory calculations suggesting a strongly bound stable parallel-stacked pyrene coverage of ~2–3 layers on the TMD surfaces. Raman spectroscopy of exfoliated TMDs while irradiating at 0.9 mW/4 μm2 under ambient conditions shows new and strong Raman bands due to oxidized states of Mo and W. Yet remarkably, under the same exposure conditions TMD/pyrene remain unperturbed. The current findings demonstrate that pyrene physisorbed on MoS2 and WS2 acts as an environmental barrier, preventing oxidative surface reactions in the TMDs catalyzed by moisture, air, and assisted by laser irradiation. Raman spectroscopy confirms that the hybrid materials stored under ambient conditions for two years remained structurally unaltered, corroborating the beneficial role of pyrene for not only hindering oxidation but also inhibiting aging.

2020 ◽  
Vol 7 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Xujing Li ◽  
Li Yin ◽  
Zhengxun Lai ◽  
Mei Wu ◽  
Yu Sheng ◽  
...  

Abstract Defects exist ubiquitously in crystal materials, and usually exhibit a very different nature from the bulk matrix. Hence, their presence can have significant impacts on the properties of devices. Although it is well accepted that the properties of defects are determined by their unique atomic environments, the precise knowledge of such relationships is far from clear for most oxides because of the complexity of defects and difficulties in characterization. Here, we fabricate a 36.8° SrRuO3 grain boundary of which the transport measurements show a spin-valve magnetoresistance. We identify its atomic arrangement, including oxygen, using scanning transmission electron microscopy and spectroscopy. Based on the as-obtained atomic structure, the density functional theory calculations suggest that the spin-valve magnetoresistance occurs because of dramatically reduced magnetic moments at the boundary. The ability to manipulate magnetic properties at the nanometer scale via defect control allows new strategies to design magnetic/electronic devices with low-dimensional magnetic order.


2015 ◽  
Vol 17 (12) ◽  
pp. 7898-7906 ◽  
Author(s):  
Orlando Miramontes ◽  
Franco Bonafé ◽  
Ulises Santiago ◽  
Eduardo Larios-Rodriguez ◽  
Jesús J. Velázquez-Salazar ◽  
...  

In this work, the adsorption of very small rhenium clusters (2–13 atoms) supported on graphene was studied by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) in combination with density functional theory calculations.


2020 ◽  
Vol 6 (32) ◽  
pp. eabc4250 ◽  
Author(s):  
Yu Lei ◽  
Derrick Butler ◽  
Michael C. Lucking ◽  
Fu Zhang ◽  
Tunan Xia ◽  
...  

Two-dimensional transition metal dichalcogenides (TMDs) emerged as a promising platform to construct sensitive biosensors. We report an ultrasensitive electrochemical dopamine sensor based on manganese-doped MoS2 synthesized via a scalable two-step approach (with Mn ~2.15 atomic %). Selective dopamine detection is achieved with a detection limit of 50 pM in buffer solution, 5 nM in 10% serum, and 50 nM in artificial sweat. Density functional theory calculations and scanning transmission electron microscopy show that two types of Mn defects are dominant: Mn on top of a Mo atom (MntopMo) and Mn substituting a Mo atom (MnMo). At low dopamine concentrations, physisorption on MnMo dominates. At higher concentrations, dopamine chemisorbs on MntopMo, which is consistent with calculations of the dopamine binding energy (2.91 eV for MntopMo versus 0.65 eV for MnMo). Our results demonstrate that metal-doped layered materials, such as TMDs, constitute an emergent platform to construct ultrasensitive and tunable biosensors.


Nanoscale ◽  
2020 ◽  
Vol 12 (32) ◽  
pp. 17005-17012
Author(s):  
Xiya Chen ◽  
Bao Lei ◽  
Yong Zhu ◽  
Jiadong Zhou ◽  
Zheng Liu ◽  
...  

Atomically sharp pristine edges of ReSe2 atomic layers were identified with scanning transmission electron microscopy imaging and density functional theory calculations.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Mohammad Amin Gharavi ◽  
Arnaud le Febvrier ◽  
Jun Lu ◽  
Grzegorz Greczynski ◽  
Björn Alling ◽  
...  

(Ti0.5, Mg0.5)N thin films were synthesized by reactive dc magnetron sputtering from elemental targets onto c-cut sapphire substrates. Characterization by θ–2θ X-ray diffraction and pole figure measurements shows a rock-salt cubic structure with (111)-oriented growth and a twin-domain structure. The films exhibit an electrical resistivity of 150 mΩ·cm, as measured by four-point-probe, and a Seebeck coefficient of −25 µV/K. It is shown that high temperature (~800 °C) annealing in a nitrogen atmosphere leads to the formation of a cubic LiTiO2-type superstructure as seen by high-resolution scanning transmission electron microscopy. The corresponding phase formation is possibly influenced by oxygen contamination present in the as-deposited films resulting in a cubic superstructure. Density functional theory calculations utilizing the generalized gradient approximation (GGA) functionals show that the LiTiO2-type TiMgN2 structure has a 0.07 eV direct bandgap.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1629
Author(s):  
Giulia Neri ◽  
Enza Fazio ◽  
Antonia Nostro ◽  
Placido Giuseppe Mineo ◽  
Angela Scala ◽  
...  

Münchnones are mesoionic oxazolium 5-oxides with azomethine ylide characteristics that provide pyrrole derivatives by a 1,3-dipolar cycloaddition (1,3-DC) reaction with acetylenic dipolarophiles. Their reactivity was widely exploited for the synthesis of small molecules, but it was not yet investigated for the functionalization of graphene-based materials. Herein, we report our results on the preparation of münchnone functionalized graphene via cycloaddition reactions, followed by the spontaneous loss of carbon dioxide and its further chemical modification to silver/nisin nanocomposites to confer biological properties. A direct functionalization of graphite flakes into few-layers graphene decorated with pyrrole rings on the layer edge was achieved. The success of functionalization was confirmed by micro-Raman and X-ray photoelectron spectroscopies, scanning transmission electron microscopy, and thermogravimetric analysis. The 1,3-DC reactions of münchnone dipole with graphene have been investigated using density functional theory to model graphene. Finally, we explored the reactivity and the processability of münchnone functionalized graphene to produce enriched nano biomaterials endowed with antimicrobial properties.


RSC Advances ◽  
2017 ◽  
Vol 7 (46) ◽  
pp. 29112-29121 ◽  
Author(s):  
Peter Kratzer ◽  
Sherif Abdulkader Tawfik ◽  
Xiang Yuan Cui ◽  
Catherine Stampfl

Electronic transport in a zig-zag-edge graphene nanoribbon (GNR) and its modification by adsorbed transition metal porphyrins is studied by means of density functional theory calculations.


Author(s):  
Shin Hum Cho ◽  
Sandeep Ghosh ◽  
Zachariah J. Berkson ◽  
Jordan A. Hachtel ◽  
Jianjian Shi ◽  
...  

Cube-shaped nanocrystals (NCs) of conventional metals like gold and silver generally exhibit localized surface plasmon resonance (LSPR) in the visible region with spectral modes determined by their faceted shapes. However, faceted NCs exhibiting LSPR response in the infrared (IR) region are relatively rare. Here, we describe the colloidal synthesis of nanoscale fluorine-doped indium oxide (F:In<sub>2</sub>O<sub>3</sub>) cubes with LSPR response in the IR region, wherein fluorine was found to both direct the cubic morphology and act as an aliovalent dopant. Single crystalline 160 nm F:In<sub>2</sub>O<sub>3</sub> cubes terminated by (100) facets and concave cubes were synthesized using a colloidal heat-up method. The presence of fluorine was found to impart higher stabilization to the (100) facets through density functional theory (DFT) calculations that evaluated the energetics of F-substitution at surface oxygen sites. These calculations suggest that the cubic morphology results from surface binding of F-atoms. In addition, fluorine acts as an anionic aliovalent dopant in the cubic bixbyite lattice of In<sub>2</sub>O<sub>3</sub>, introducing a high concentration of free electrons leading to LSPR. We confirmed the presence of lattice fluorine dopants in these cubes using solid-state <sup>19</sup>F and <sup>115</sup>In nuclear magnetic resonance (NMR) spectroscopy. The cubes exhibit narrow, shape-dependent multimodal LSPR extinction peaks due to corner- and edge-centered modes. The spatial origin of these different contributions to the spectral response are directly visualized by electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM).


Sign in / Sign up

Export Citation Format

Share Document