scholarly journals Exploring Strategies to Contact 3D Nano-Pillars

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 716 ◽  
Author(s):  
Esteve Amat ◽  
Alberto del Moral ◽  
Marta Fernández-Regúlez ◽  
Laura Evangelio ◽  
Matteo Lorenzoni ◽  
...  

This contribution explores different strategies to electrically contact vertical pillars with diameters less than 100 nm. Two process strategies have been defined, the first based on Atomic Force Microscope (AFM) indentation and the second based on planarization and reactive ion etching (RIE). We have demonstrated that both proposals provide suitable contacts. The results help to conclude that the most feasible strategy to be implementable is the one using planarization and reactive ion etching since it is more suitable for parallel and/or high-volume manufacturing processing.

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5862
Author(s):  
Ingo Ortlepp ◽  
Jaqueline Stauffenberg ◽  
Eberhard Manske

This paper deals with a planar nanopositioning and -measuring machine, the so-called nanofabrication machine (NFM-100), in combination with a mounted atomic force microscope (AFM). This planar machine has a circular moving range of 100 mm. Due to the possibility of detecting structures in the nanometre range with an atomic force microscope and the large range of motion of the NFM-100, structures can be analysed with high resolution and precision over large areas by combining the two systems, which was not possible before. On the basis of a grating sample, line scans over lengths in the millimetre range are demonstrated on the one hand; on the other hand, the accuracy as well as various evaluation methods are discussed and analysed.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012204
Author(s):  
D J Rodriguez ◽  
A V Kotosonova ◽  
H A Ballouk ◽  
N A Shandyba ◽  
O I Osotova ◽  
...  

Abstract In this work, we carried out an investigation of commercial atomic force microscope (AFM) probes for contact and semi-contact modes, which were modified by focused ion beam (FIB). This method was used to modify the original tip shape of silicon AFM probes, by ion-etching and ion-enhance gas deposition. we show a better performance of the FIB-modified probes in contrast with the non-modified commercial probes. These results were obtained after using both probes in semi-contact mode in a calibration grating sample.


2002 ◽  
Vol 235 (1-4) ◽  
pp. 411-414 ◽  
Author(s):  
Zhuo Wang ◽  
Daliang Sun ◽  
Jifan Hu ◽  
Deliang Cui ◽  
Xiaohong Xu ◽  
...  

2020 ◽  
Author(s):  
S-R. Lee ◽  
Y. Park ◽  
J-W. Park

AbstractThe behavior of the cinnamycin on the biomimetic membrane was studied with respect to the curvature of the phosphatidylethanolamine(PE)-included membrane with the adhesion measured by the atomic force microscope(AFM). The membrane was formed through vesicle fusion on the hydrophobic surface of the sphere spheres, which was used to define the curvature of the membrane. The hydrophobicity was generated by the reaction of alkyl-silane and analyzed with the X-ray photoelectron spectrometer. The cinnamycin, immobilized covalently to the AFM tip coated with 1-mercapto-1-undecanol that was observed inert to any adhesion to the membrane, showed that the adhesion became stronger with the increase in the curvature. The correlation between the adhesion and the curvature was linearly proportional. Previously, it was found that the cinnamycin was bound to PE headgroup and the binding was enhanced by the interaction of the hydrophobic area located at one side of the cinnamycin. Therefore, the linear proportionality seems to suggest that the interaction is related to the one dimensional orientation of the binding.Statement of SignificanceThe behavior of the cinnamycin was studied on the phosphatidylethanolamine(PE)-included membrane with respect to the curvature of the membrane. The cinnamycin, immobilized covalently to the atomic force microscope, showed that the adhesion became stronger linearly with the increase in the curvature. Previously, it was found that the specific binding between the cinnamycin and PE headgroup was enhanced by the interaction of the hydrophobic area located at one side of the cinnamycin. Therefore, the linear proportionality seems to suggest that the interaction is related to the one dimensional orientation of the binding.


2014 ◽  
Vol 925 ◽  
pp. 140-143
Author(s):  
Moganraj Palianysamy ◽  
Zaliman Sauli ◽  
Uda Hashim ◽  
Vithyacharan Retnasamy ◽  
Steven Taniselass ◽  
...  

Reactive Ion Etching (RIE) is an important process in fabrication of semiconductor devices. Design Of Experiment (DOE) has been used to study the effect of Reactive Ion Etch (RIE) towards surface morphology of aluminum bond pad. Important RIE factors involved in this experimental study are ratio of Tetrafluoromethane (CF4), Argon gas flow, BIAS, and ICP power. Different combinations of these factors produces different results of surface morphologies which was obtained using Atomic Force Microscopic (AFM). Produced results shows that overall surface roughness of the pad is affected by RIE and DOE offers a better way to optimize the desired outcome.


2000 ◽  
Vol 636 ◽  
Author(s):  
Andrea Notargiacomo ◽  
Vittorio Foglietti ◽  
Florestano Evangelisti

AbstractWe have investigated the local oxidation of an aluminum film to fabricate aluminum and aluminum oxide masks on Si and SiGe substrates. The local oxidation is made by negatively biasing the probe of an atomic force microscope operating in contact mode. The masks are defined by removing the unwanted material using highly selective etching solutions at room temperature. The produced aluminum-based masks can withstand reactive ion etching processes using fluorinated gases mixtures. We report examples of sub-100 nm pattern transfer on the substrate using the AFM fabricated masks. Preliminary observations suggest to use the sputtered aluminum films for which the anodization is found more efficient than for e-beam evaporated aluminum.


Sign in / Sign up

Export Citation Format

Share Document