Reactive Ion Etching Parameter Effect on Aluminum Bond Pad Surface Morphology

2014 ◽  
Vol 925 ◽  
pp. 140-143
Author(s):  
Moganraj Palianysamy ◽  
Zaliman Sauli ◽  
Uda Hashim ◽  
Vithyacharan Retnasamy ◽  
Steven Taniselass ◽  
...  

Reactive Ion Etching (RIE) is an important process in fabrication of semiconductor devices. Design Of Experiment (DOE) has been used to study the effect of Reactive Ion Etch (RIE) towards surface morphology of aluminum bond pad. Important RIE factors involved in this experimental study are ratio of Tetrafluoromethane (CF4), Argon gas flow, BIAS, and ICP power. Different combinations of these factors produces different results of surface morphologies which was obtained using Atomic Force Microscopic (AFM). Produced results shows that overall surface roughness of the pad is affected by RIE and DOE offers a better way to optimize the desired outcome.

2014 ◽  
Vol 925 ◽  
pp. 84-87
Author(s):  
Moganraj Palianysamy ◽  
Zaliman Sauli ◽  
Uda Hashim ◽  
Vithyacharan Retnasamy ◽  
Steven Taniselass ◽  
...  

Reactive Ion Etching (RIE) is an important process in fabrication of semiconductor devices. Design Of Experiment (DOE) has been used to study the effect of Reactive Ion Etch (RIE) towards surface morphology of aluminum bond pad. Important RIE factors involved in this experimental study are ratio of Tetrafluoromethane (CF4), Argon gas flow, BIAS, and ICP power. Different combinations of these factors produces different results of surface morphologies which was obtained using Atomic Force Microscopic (AFM). Produced results shows that overall surface roughness of the pad is affected by RIE and DOE offers a better way to optimize the desired outcome.


2014 ◽  
Vol 896 ◽  
pp. 233-236
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Moganraj Palianysamy ◽  
Steven Taniselass ◽  
Phaklen Ehkan ◽  
...  

Wettability is one of the most important aspects in microfluid technology. The effect of surface roughness on the wettability by a liquid has been studied experimentally using Design of Experiment(DOE). Sixteen samples were etched using Reactive Ion Etching (RIE) technique with different combination of parameters. RIE parameters concerned in this experiment are ratio of Oxygen, Argon, ICP power and BIAS power. Reactive Ion Etching influences surface morphology which is correlated with the contact angle produced. This preliminary study is to gain information on the how does RIE affects the aluminum bondpad in terms of surface roughness and contact angle.


2005 ◽  
Vol 483-485 ◽  
pp. 765-768 ◽  
Author(s):  
Jun Hai Xia ◽  
E. Rusli ◽  
R. Gopalakrishnan ◽  
S.F. Choy ◽  
Chin Che Tin ◽  
...  

Reactive ion etching of SiC induced surface damage, e.g., micromasking effect induced coarse and textured surface, is one of the main concerns in the fabrication of SiC based power devices [1]. Based on CHF3 + O2 plasma, 4H-SiC was etched under a wide range of RF power. Extreme coarse and textured etched surfaces were observed under certain etching conditions. A super-linear relationship was found between the surface roughness and RF power when the latter was varied from 40 to 160 W. A further increase in the RF power to 200 W caused the surface roughness to drop abruptly from its maximum value of 182.4 nm to its minimum value of 1.3 nm. Auger electron spectroscopy (AES) results revealed that besides the Al micromasking effect, the carbon residue that formed a carbon-rich layer, could also play a significant role in affecting the surface roughness. Based on the AES results, an alternative explanation on the origin of the coarse surface is proposed.


2001 ◽  
Author(s):  
Jih-Hsing Tu ◽  
Fangang Tseng ◽  
Ching-Chang Chieng

Abstract Present study investigates the roughness effect on laminar gas flow for microchannels ranging from 40 to 600 μm with various roughness heights (40–82 nm) by systematical experiments. The micro-channels are manufactured by micro-machining technology and KOH anisotropic etching is employed to achieve various roughness patterns. Experimental results shows that higher product levels of Reynolds number (Reh) and friction factor (f) are obtained for microchannels of larger size and smaller relative roughness and friction factor f approaches to laminar flow theory value f0 for very smooth channel but the ratio of (f/f0) decreases as the surface roughness increases.


1993 ◽  
Vol 324 ◽  
Author(s):  
Douglas L. Melville ◽  
J.G. Simmons ◽  
D.A. Thompson

AbstractThe advantages of in-situ SIMS plasma probe diagnostics are highlighted in low pressure hydrocarbon ECR reactive ion etching (RIE) of III-V materials. Three aspects of the RIE process are investigated. First, the dominant ion species in a CH4/H2/Ar plasma are recorded at various chamber pressures, ECR powers, CH4/(CH4+H2) gas flow ratios and microwave cavity tuning. These studies have improved our understanding of the effects of these parameters on the relative concentrations of reactive precursor species in the plasma and have led to more rapid optimization of the etch system. Secondly, SIMS has been used for identification of reaction products from the III-V surface at the optimized plasma conditions. The Ar diluted mixture gives rise to significant levels of group V hydrides and organometallic compounds and the dominant group III volatile ions have been positively identified as dimethyl species. The third and final aspect reported is the application of volatile product identification to endpoint detection. In lcm2 multiple quantum well samples, layers as thin as 50Å are easily distinguishable.


2013 ◽  
Vol 860-863 ◽  
pp. 894-898
Author(s):  
Chao Tang ◽  
Sheng Li Dai ◽  
Jiao Li

In order to analyze the ageing mechanism of oil-paper, the Atomic Force Microscope (AFM), which is one of the important instruments in nanometer area, was used in this paper for the analysis of the micro surface morphology, and a 3-D surface roughness analysis on the AFM image was presented. The AFM figures indicates that the molecular arrangement of the initial cellulose paper is close and ordered, some of the hexagonal mesh structures of the D-glucopyranose units were broken down after 100 days accelerated thermal ageing. The roughness analysis indicates that he fiber surface roughness parameter Sa increases with the deepening of ageing degree. Special attention should be paid on the increase in the surface roughness of insulation paper, as it will aggravate the oil streaming electrification when the paper is applied to the power transformers.


1990 ◽  
Vol 201 ◽  
Author(s):  
M. W. Cole ◽  
C. B. Cooper ◽  
M. Dutta ◽  
C. S. Wrenn ◽  
S. Saliman ◽  
...  

AbstractThis study evaluates variations in SiCl4 reactive ion etching (RIE) process parameters in order to optimize the fabrication of lateral quantum well arrays (QWA) used in III–V semiconductor laser and detector designs. Since fabrication involves MBE regrowth on SiCl4 etched surfaces, material quality of both the etched surface and GaAs regrowth are evaluated. The variation of RIE parameters involved power levels, DC bias and etch times (10 Watts, -30V, 8 min.; 25 Watts, -100V, 5 min.; 95 Watts,-340V, 2 min.) while material removal was held constant (400nm). Evaluation of the etched surfaces revealed that the lattice damage depth exceeded lOOnm for all power levels. The extent of disorder beneath the etched surface was less for the low power long etch time. Etching at higher power levels for shorter time periods resulted in smoother surfaces and enhanced electrical characteristics, which in turn yielded a higher quality GaAs regrowth region. For the RIE parameters examined in this study, the variation in defect densities seemed to have a lesser effect on device performance as compared to the extreme differences in surface morphologies. Thus, for the parameters evaluated in this work, we suggest that QWA fabrication is optimized via SiClif RIE at the high power level for a short time period.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1158
Author(s):  
Han Bao ◽  
Lan Chen ◽  
Bowen Ren

Chemical mechanical polishing (CMP) has become one of the most important process stages in the fabrication of advanced integrated circuits (IC). The CMP pattern effect strongly influences the planarization of the chip surface morphology after CMP, degrading the performance and the yield of the circuits. In this paper, we introduce a method to predict the post-CMP surface morphology with a convolutional neural network (CNN)-based CMP model. Then, CNN-based, density step height (DSH)-based, and common neural-network-based CMP models are built to compare the accuracy of the predictions. The test chips are designed and taped out and the predictions of the three models are compared with experimental results measured by an atomic force profiler (AFP) and scanning electron microscope (SEM). The results show that CNN-based CMP models have better accuracy by taking advantage of the CNN networks to extract features from images instead of the traditional equivalent pattern parameters. The effective planarization length (EPL) is introduced and defined to make better predictions with real-time CMP models and in dummy filling tasks. Experiments are designed to show a method to solve the EPL.


Sign in / Sign up

Export Citation Format

Share Document