scholarly journals Enhanced Supercapacitive Performance of Higher-Ordered 3D-Hierarchical Structures of Hydrothermally Obtained ZnCo2O4 for Energy Storage Devices

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1206 ◽  
Author(s):  
Gutturu Rajasekhara Reddy ◽  
Nadavala Siva Kumar ◽  
Borelli Deva Prasad Raju ◽  
Gnanendra Shanmugam ◽  
Ebrahim H. Al-Ghurabi ◽  
...  

The demand for eco-friendly renewable energy resources as energy storage and management devices is increased due to their high-power density and fast charge/discharge capacity. Recently, supercapacitors have fascinated due to their fast charge–discharge capability and high-power density along with safety. Herein, the authors present the synthesis of 3D-hierarchical peony-like ZnCo2O4 structures with 2D-nanoflakes by a hydrothermal method using polyvinylpyrrolidone. The reaction time was modified to obtain two samples (ZCO-6h and ZCO-12h) and the rest of the synthesis conditions were the same. The synthesized structures were systematically studied through various techniques: their crystalline characteristics were studied through XRD analysis, their morphologies were inspected through SEM and TEM, and the elemental distribution and oxidation states were studied by X-ray photoelectron spectroscopy (XPS). ZCO-12h sample has a larger surface area (55.40 m2·g−1) and pore size (24.69 nm) than ZCO-6h, enabling high-speed transport of ions and electrons. The ZCO-12h electrode showed a high-specific capacitance of 421.05 F·g−1 (31.52 C·g−1) at 1 A·g−1 and excellent cycle performance as measured by electrochemical analysis. Moreover, the morphologic characteristics of the prepared hierarchical materials contributed significantly to the improvement of specific capacitance. The excellent capacitive outcomes recommend the 3D-ZnCo2O4 hierarchical peony-like structures composed of 2D-nanoflakes as promising materials for supercapacitors with high-performance.

Author(s):  
Nilimapriyadarsini Swain ◽  
Saravanakumar Balasubramaniam ◽  
Manab Kundu ◽  
Lukas Schmidt-Mende ◽  
Ananthakumar Ramadoss

Supercapacitors have emerged as an outstanding candidate among numerous energy storage devices because of their long-term cycle life, high power density, and minimal safety concerns. As we know, the lower...


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1750
Author(s):  
Deepa Guragain ◽  
Romakanta Bhattarai ◽  
Jonghyun Choi ◽  
Wang Lin ◽  
Ram Krishna Gupta ◽  
...  

For electrochemical supercapacitors, nickel cobaltite (NiCo2O4) has emerged as a new energy storage material. The electrocapacitive performance of metal oxides is significantly influenced by their morphology and electrical characteristics. The synthesis route can modulate the morphological structure, while their energy band gaps and defects can vary the electrical properties. In addition to modifying the energy band gap, doping can improve crystal stability and refine grain size, providing much-needed surface area for high specific capacitance. This study evaluates the electrochemical performance of aluminum-doped Ni1−xAlxCo2O4 (0 ≤ x ≤ 0.8) compounds. The Ni1−xAlxCo2O4 samples were synthesized through a hydrothermal method by varying the Al to Ni molar ratio. The physical, morphological, and electrochemical properties of Ni1−xAlxCo2O4 are observed to vary with Al3+ content. A morphological change from urchin-like spheres to nanoplate-like structures with a concomitant increase in the surface area, reaching up to 189 m2/g for x = 0.8, was observed with increasing Al3+ content in Ni1−xAlxCo2O4. The electrochemical performance of Ni1−xAlxCo2O4 as an electrode was assessed in a 3M KOH solution. The high specific capacitance of 512 F/g at a 2 mV/s scan rate, 268 F/g at a current density of 0.5 A/g, and energy density of 12.4 Wh/kg was observed for the x = 0.0 sample, which was reduced upon further Al3+ substitution. The as-synthesized Ni1−xAlxCo2O4 electrode exhibited a maximum energy density of 12.4 W h kg−1 with an outstanding high-power density of approximately 6316.6 W h kg−1 for x = 0.0 and an energy density of 8.7 W h kg−1 with an outstanding high-power density of approximately 6670.9 W h kg−1 for x = 0.6. The capacitance retention of 97% and 108.52% and the Coulombic efficiency of 100% and 99.24% were observed for x = 0.0 and x = 0.8, respectively. First-principles density functional theory (DFT) calculations show that the band-gap energy of Ni1−xAlxCo2O4 remained largely invariant with the Al3+ substitution for low Al3+ content. Although the capacitance performance is reduced upon Al3+ doping, overall, the Al3+ doped Ni1−xAlxCo2O4 displayed good energy, powder density, and retention performance. Thus, Al3+ could be a cost-effective alternative in replacing Ni with the performance trade off.


Supercapacitors are considered promising energy storage systems due to their high power density, fast charge-discharge, long service lifetime, wide operating temperature range and excellent capacitance retention. The electrochemical performance of the supercapacitors depends upon numerous factors such as nature of electrode materials, type of electrolyte and separator thickness, etc. Among these factors, electrolyte used in supercapacitor plays an important role in deciding final characteristics of supercapacitors. In recent decades, tremendous research work has been on the development of novel electrolytes and electrode/electrolyte configurations. In this chapter, we aimed to focus on the role of inorganic electrolytes used in supercapacitors.


2018 ◽  
Vol 6 (31) ◽  
pp. 8528-8537 ◽  
Author(s):  
Mingxing Zhou ◽  
Ruihong Liang ◽  
Zhiyong Zhou ◽  
Xianlin Dong

High energy storage density and high power density combined in novel BaTiO3-based lead-free ceramics for multilayer ceramic capacitors.


Author(s):  
Ya-Nan Liu ◽  
Huili Li ◽  
Xue Wang ◽  
Tian Lv ◽  
Keyi Dong ◽  
...  

Flexible supercapacitors have attracted increasing interests due to their high power density, long-term cycling life and excellent safety. Liking other energy storage devices, flexible supercapacitors show serious performance degradation as...


RSC Advances ◽  
2016 ◽  
Vol 6 (86) ◽  
pp. 83386-83392 ◽  
Author(s):  
Mengran Wang ◽  
Yexiang Liu ◽  
Kai Zhang ◽  
Fan Yu ◽  
Furong Qin ◽  
...  

Primary and rechargeable zinc/air batteries could be the next generation of energy storage devices because of their high power density and safety.


2020 ◽  
Vol 8 (36) ◽  
pp. 19043-19049
Author(s):  
Yongxia Wang ◽  
Mingjie Wu ◽  
Jun Li ◽  
Haitao Huang ◽  
Jinli Qiao

CoP anchored N,P co-doped carbon as a bifunctional oxygen catalyst for Zn–air battery with high power density and charge–discharge stability.


Sign in / Sign up

Export Citation Format

Share Document