scholarly journals Argovit™ Silver Nanoparticles Effects on Allium cepa: Plant Growth Promotion without Cyto Genotoxic Damage

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1386 ◽  
Author(s):  
Francisco Casillas-Figueroa ◽  
María Evarista Arellano-García ◽  
Claudia Leyva-Aguilera ◽  
Balam Ruíz-Ruíz ◽  
Roberto Luna Vázquez-Gómez ◽  
...  

Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products. Unfortunately, the lack of complete physicochemical characterization and the variety of models used to evaluate its cytotoxic/genotoxic effect make comparison and decision-making regarding their safe use difficult. In this work, we present a systematic study of the cytotoxic and genotoxic activity of the commercially available AgNPs formulation Argovit™ in Allium cepa. The evaluated concentration range, 5–100 µg/mL of metallic silver content (85–1666 µg/mL of complete formulation), is 10–17 times higher than the used for other previously reported polyvinylpyrrolidone (PVP)-AgNP formulations and showed no cytotoxic or genotoxic damage in Allium cepa. Conversely, low concentrations (5 and 10 µg/mL) promote growth without damage to roots or bulbs. Until this work, all the formulations of PVP-AgNP evaluated in Allium cepa regardless of their size, concentration, or the exposure time had shown phytotoxicity. The biological response observed in Allium cepa exposed to Argovit™ is caused by nanoparticles and not by silver ions. The metal/coating agent ratio plays a fundamental role in this response and must be considered within the key physicochemical parameters for the design and manufacture of safer nanomaterials.

2017 ◽  
Vol 137 ◽  
pp. 18-28 ◽  
Author(s):  
Petra Cvjetko ◽  
Anita Milošić ◽  
Ana-Marija Domijan ◽  
Ivana Vinković Vrček ◽  
Sonja Tolić ◽  
...  

2017 ◽  
Vol 396 ◽  
pp. 461-470 ◽  
Author(s):  
S. Ferraris ◽  
M. Miola ◽  
A. Cochis ◽  
B. Azzimonti ◽  
L. Rimondini ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Luis M. Carrillo-López ◽  
Hilda A. Zavaleta-Mancera ◽  
Alfredo Vilchis-Nestor ◽  
R. Marcos Soto-Hernández ◽  
Jesús Arenas-Alatorre ◽  
...  

Biosynthesis of silver nanoparticles (AgNPs) was achieved using extract ofChenopodium ambrosioidesas a reducer and coating agent at room temperature (25°C). Two molar solutions of AgNO3(1 mM and 10 mM) and five extract volumes (0.5, 1, 2, 3, and 5 mL) were used to assess quantity, shape, and size of the particles. The UV-Vis spectra gave surface plasmon resonance at 434–436 nm of the NPs synthesized with AgNO310 mM and all extract volumes tested, showing a direct relationship between extract volumes and quantity of particles formed. In contrast, the concentration of silver ions was related negatively to particle size. The smallest (4.9 ± 3.4 nm) particles were obtained with 1 mL of extract in AgNO310 mM and the larger amount of particles were obtained with 2 mL and 5 mL of extract. TEM study indicated that the particles were polycrystalline and randomly oriented with a silver structure face centered cubic (fcc) and fourier transform infrared spectroscopy (FTIR) indicated that disappearance of the –OH group band after bioreduction evidences its role in reducing silver ions.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3185
Author(s):  
Morena Nocchetti ◽  
Anna Donnadio ◽  
Eleonora Vischini ◽  
Tamara Posati ◽  
Stefano Ravaioli ◽  
...  

A layered insoluble inorganic-organic solid, namely zirconium phosphate glycine-N,N-bismethylphosphonate, was used to prepare dispersions of nanosheets to support active metals such as metallic silver nanoparticles and zinc ions. Zr phosphate-phosphonate microcrystals were first exfoliated with methylamine to produce a stable colloidal dispersion and then the methylamine was removed by treatment with hydrochloric acid. The obtained colloidal dispersion of Zr phosphate-phosphonate nanosheets was used to immobilize silver or zinc cations, via ion exchange, with the acidic protons of the sheets. The layered matrix showed a great affinity for the metal cations up taking all the added cations. The treatment of the dispersions containing silver ions with ethanol yielded metal silver nanoparticles grafted on the surface of the layered host. The samples were characterized by X-ray powder diffraction, elemental analysis transmission electron microscopy, and selected samples were submitted to antimicrobial tests. The nanocomposites based on Ag nanoparticles showed good bactericidal properties against the bacterial reference strain Staphylococcus epidermidis (S. epidermidis).


2003 ◽  
Vol 774 ◽  
Author(s):  
Rajesh R. Naik ◽  
Sarah J. Stringer ◽  
Jay M. Johnson ◽  
Morley O. Stone

AbstractThe use of biomolecules in the creation of inorganic materials offers an alternative to conventional synthetic methods. Biomolecules are currently used to control nucleation and growth of inorganic nanoparticles. Here we demonstrate the formation of silver nanoparticles in the presence of silver-binding peptides. Examination of the silver nanoparticles by transmission electron microscopy revealed a variety of crystal morphologies such as hexagons, triangles and spheres. The peptides serve to reduce the silver ions in the aqueous solution to metallic silver as well as control crystal growth. The nucleation property of peptides can be used as tool for bottom-up fabrication.


2015 ◽  
Vol 1131 ◽  
pp. 223-226 ◽  
Author(s):  
Pranlekha Traiwatcharanon ◽  
Kriengkri Timsorn ◽  
Chatchawal Wongchoosuk

In this work, we have presented the green synthesis of silver nanoparticles (Ag-NPs) using extracts of Pistiastratiotes L. as reducing agent. The silver nitrate (AgNO3) solutions were used as precursor. The experiments were performed under irradiation with a light that can help to increase the activation for reduction of silver ions (Ag+) to metallic silver (Ag0). The effects of pH on the nature of Ag-NPs have been systematically studied by using ultraviolet-visible spectroscopy (UV-Vis) and transmission electron microscopy (TEM). The results show that the synthesis of Ag-NPs in acidic medium gives smaller size than that in basic medium. A number of synthesized Ag-NPs increase with increasing the concentrations of acidic/basic medium. All synthesized Ag-NPs have spherical shape.


2013 ◽  
Vol 10 (87) ◽  
pp. 20130396 ◽  
Author(s):  
Renata Behra ◽  
Laura Sigg ◽  
Martin J. D. Clift ◽  
Fabian Herzog ◽  
Matteo Minghetti ◽  
...  

Owing to their antimicrobial properties, silver nanoparticles (NPs) are the most commonly used engineered nanomaterial for use in a wide array of consumer and medical applications. Many discussions are currently ongoing as to whether or not exposure of silver NPs to the ecosystem (i.e. plants and animals) may be conceived as harmful or not. Metallic silver, if released into the environment, can undergo chemical and biochemical conversion which strongly influence its availability towards any biological system. During this process, in the presence of moisture, silver can be oxidized resulting in the release of silver ions. To date, it is still debatable as to whether any biological impact of nanosized silver is relative to either its size, or to its ionic constitution. The aim of this review therefore is to provide a comprehensive, interdisciplinary overview—for biologists, chemists, toxicologists as well as physicists—regarding the production of silver NPs, its (as well as in their ionic form) chemical and biochemical behaviours towards/within a multitude of relative and realistic biological environments and also how such interactions may be correlated across a plethora of different biological organisms.


2020 ◽  
Vol 11 ◽  
pp. 620-630 ◽  
Author(s):  
Marta Bartel ◽  
Katarzyna Markowska ◽  
Marcin Strawski ◽  
Krystyna Wolska ◽  
Maciej Mazur

We report on the synthesis of composite nanobeads with antibacterial properties. The particles consist of polystyrene cores that are surrounded by sulfonic gel shells with embedded silver nanoparticles. The nanocomposite beads are prepared by sulfonation of polystyrene particles followed by accumulation of silver ions in the shell layer and subsequent reduction with sodium borohydride. The resulting material has been characterized by electron microscopy, vibrational and X-ray photoelectron spectroscopy and several other experimental techniques. It was shown that sodium borohydride reduces silver ions embedded in the gel layer producing silver nanoparticles but also transforms a fraction of sulfonic groups in the polymer to moieties with sulfur in a lower oxidation state, likely thiols. It is hypothesized that the generated thiol groups are anchoring the nanoparticles in the gel shell of the nanobeads stabilizing the whole structure. The silver-decorated nanobeads appear to be a promising material with considerable antimicrobial activity and were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. The determined minimum inhibitory (MIC) and minimum biofilm inhibitory (MBIC) concentrations are comparable to those of non-incorporated silver nanoparticles.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 729
Author(s):  
Ewa Pociecha ◽  
Anna Gorczyca ◽  
Michał Dziurka ◽  
Ewelina Matras ◽  
Magdalena Oćwieja

This study aimed to examine the hypothesis that silver nanoparticles (AgNPs) and silver ions might induce specific changes and thereby affect plant development and final yield. The experiment was performed on spring wheat, cultured hydroponically with two types of negatively charged AgNPs of an average size of 13–15 nm and silver ions for 14 days and then transplanted to pots with soil. Our results indicated that treatment with the AgNPs stabilized by specific compounds resulted in growth promotion and a reduced number of days to flowering, while that with the ionic form of Ag only caused greater growth in height without influencing the time to heading. Accelerated flowering was caused by changes in phytohormone balance, with GA6 found to be especially favorable. Nanoparticles and silver ions affected the function of photosystem II and the transport and partitioning of assimilates. Increases in the transport form of sugars such as sucrose, raffinose and sorbitol were associated with a considerable improvement in wheat yield, especially in the case of plants treated with the nanoparticle forms, which were more stable and resistant to oxidative dissolution.


Author(s):  
Ilnur T. Garipov ◽  
Renat R. Khaydarov ◽  
Olga U. Gapurova ◽  
Rashid A. Khaydarov ◽  
Firdaus M. Lutfi ◽  
...  

Over the last 20 years, metallic silver in the form of Ag nanoparticles has made a remarkable comeback as an example of a nanomaterial for control of microorganisms. The purpose of our study was a) to quantitatively estimate the antimicrobial effect of silver nanoparticles compared with that of silver ions and b) to check the efficacy of nanosilver as an antimicrobial agent against a range of microbes on the surface of water-soluble paint, 100% cotton fabric, and fibrous chemisorbent. Minimum inhibitory concentration tests quantitatively showed that Ag nanoparticles were less efficient than Ag+ ions against representatives of gram-positive / gram-negative bacteria and cosmopolitan saprotrophic fungi. Antifungal/antibacterial effects against Aspergillus niger, Penicillium phoeniceum, and Staphylococcus aureus were confirmed for nanosilver concentrations of even 1 μg/cm2 on the surface of cotton fabric and 0.8 μg/cm2 in water-soluble paint. As the concentration of nanosilver in water-soluble paint/cotton fabric was increased to 7 μg/cm2, the growth of Bacillus subtilis and Escherichia coli was suppressed as well. Microbiological tests conducted over a period of 60 days showed that there was no biofilm growth on the surface of a silver nanoparticle-coated fiber sorbent during its everyday operation as a household water treatment filter. Thus, silver nanoparticles as an add-on to water-soluble paints, textile fabrics or fiber chemisorbents had a remarkable antibacterial/antifungal effect, although some of the Ag nanoparticles were agglomerated into larger colloidal clusters


Sign in / Sign up

Export Citation Format

Share Document