scholarly journals Non-Isothermal Crystallization Behavior and Thermal Properties of Polyethylene Tuned by Polypropylene and Reinforced with Reduced Graphene Oxide

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1428
Author(s):  
Antimo Graziano ◽  
Otavio Augusto Titton Dias ◽  
Christian Garcia ◽  
Shaffiq Jaffer ◽  
Jimi Tjong ◽  
...  

This research work is the first to report thermal stability, heat deformation resistance, and crystallization behavior of a Polyethylene (PE)-based biphasic polyolefin system reinforced with Reduced Graphene Oxide (RGO), which was obtained through Graphene Oxide (GO) chemical reduction. Polypropylene (PP) represented the polymeric dispersed phase. A strategic PE/PP/RGO manufacturing procedure was employed to thermodynamically localize RGO at the PE/PP interface, as confirmed by Transmission Electron Microscopy (TEM), bringing a uniform micro phase dispersion into the macro phase. In addition, studies of PE non-isothermal crystallization kinetics indicated that the morphology tunable micro phase and the nanolayered RGO promoted a nucleation-controlled PE crystallization, which was supported by Polarized Light Optical Microscopy (PLOM). This, together with fine morphology, justified the remarkable enhancement registered for the ternary system’s thermal stability and heat deformation resistance. Different filler loads were employed, with weight fractions of 2% and 4%. It was observed that the former, being better exfoliated and more homogeneously distributed at the PE/PP interface than the latter, led to a more improved PE crystallization, alongside a greater ternary system’s thermal properties. Moreover, the thermal stability of PE/PP reinforced with 2% of RGO was even higher than that of virgin PP, while their heat deformation resistance values were found to be similar. Therefore, this unique outcome provides industries, such as the energy and automotive sectors, with the opportunity to substitute PP-rich products with those mostly comprised of a cheaper, more abundant, yet performant PE.

Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 990 ◽  
Author(s):  
Wanting Zhao ◽  
Yan Qi ◽  
Yue Wang ◽  
Yun Xue ◽  
Peng Xu ◽  
...  

Calcium alginate (CaAlg) is a kind of biodegradable and eco-friendly functional material, and CaAlg/reduced graphene oxide (rGO) composites are expected to be applied as new textile, heat-generating, and flame-retardant materials. In this paper, the CaAlg/rGO composites were prepared by a sol-gel method and their morphological and thermal properties were studied. The results showed that the introduction of rGO can efficiently improve the thermal stability of CaAlg. Further study showed that rGO increased the carbon formation rate by 4.1%, indicating that the thermal stability was improved by the promotion of carbon formation. Moreover, the weight loss rate of the composites was faster at 180–200 °C than that of CaAlg, after which the rate was less comparatively, suggesting the better thermal stability of the composite. This maybe because the high heat transfer efficiency of rGO allowed the material to reach the temperature of the thermal decomposition of the glycan molecule chain within a short time, and then promoted carbon formation. The thermal cracking mechanism of the composites is proposed based on the experimental data.


2018 ◽  
Vol 33 (1) ◽  
pp. 85-96
Author(s):  
Thangamani Rajkumar ◽  
Nagamuthu Muthupandiyan ◽  
Chinnaswamy Thangavel Vijayakumar

Reduced graphene oxide (RGEO) and N-[4-(chlorocarbonyl)phenyl]maleimide-functionalized reduced graphene oxide (MFRGEO) were used as nanofillers for polymethyl methacrylate (PMMA) matrix nanocomposites to enhance thermal stability. Methyl methacrylate containing nanofiller of four different weight percent (0.2, 0.4, 0.6, and 0.8) was polymerized using ultrasonic radiation-assisted bulk polymerization. The Fourier-transform infrared spectra showed the absence of chemical interaction between the filler and the matrix phase. Morphology of nanocomposites studied using scanning electron microscope confirmed the assistance aided by ultrasonication in the uniform dispersion of nanofiller in the PMMA matrix. Thermogravimetric (TG) study revealed the presence of MFRGEO enhanced the thermal stability of PMMA by shifting the entire degradation to higher temperature. The thermal stability of PMMA nanocomposite was improved by as much as 40°C at just 0.8 wt% loading of MFRGEO. Differential TG study also supported the role of maleimide functionalization on RGEO in the enhancement of thermal stability of PMMA by means of retarding the degradation rate of unsaturated chain ends in the PMMA matrix. Unlike MFRGEO, RGEO failed to enhance the thermal stability of PMMA.


ACS Omega ◽  
2020 ◽  
Vol 5 (34) ◽  
pp. 21345-21354
Author(s):  
Esraa Hamdy ◽  
Laila Saad ◽  
Fuad Abulfotuh ◽  
Moataz Soliman ◽  
Shaker Ebrahim

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joanna Wilk ◽  
Robert Smusz ◽  
Ryszard Filip ◽  
Grzegorz Chmiel ◽  
Tomasz Bednarczyk

Abstract Graphene oxide/rubber composites were experimentally investigated for obtaining their thermal properties. Three kinds of the composite matrix material have been used: NBR, HNBR and FKM. The reduced graphene oxide in the form of crumped flakes has been applied as the filler influencing on thermal conductivity of the composites. Two values of graphene oxide weight concentration have been taken into account in the investigation. Thermal conductivity of the composites and basic matrix has been measured by the professional apparatus with the use of the guarded heat plate method. Before measurements the preliminary tests using the simplified comparative method have been performed. The results obtained, both from preliminary tests and using the guarded heat plate method, show an increase in thermal conductivity with increasing the reduced graphene oxide content in the composite. The experimental investigation allowed to determine not only the increase in thermal properties of graphene oxide/rubber composites compared to the basic matrix, but also the absolute values of thermal conductivities. Additionally, the SEM analysis showed that the tested composite samples contain agglomerates of the rGO nanoparticles. The occurrence of agglomerates could affect the composite thermal properties. This was noticed in the comparatively measurements of the temperature of different composites during the heating of samples tested. The maximum enhancement of thermal conductivity obtained was about 11% compared to the basis matrix of the composites tested.


2017 ◽  
Vol 63 ◽  
pp. 1-11 ◽  
Author(s):  
Suman Chhetri ◽  
Nitai Chandra Adak ◽  
Pranab Samanta ◽  
Naresh Chandra Murmu ◽  
Tapas Kuila

Sign in / Sign up

Export Citation Format

Share Document