scholarly journals Investigating a Lock-In Thermal Imaging Setup for the Detection and Characterization of Magnetic Nanoparticles

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1665
Author(s):  
Lukas Steinmetz ◽  
Christoph Kirsch ◽  
Christoph Geers ◽  
Alke Petri-Fink ◽  
Mathias Bonmarin

Magnetic hyperthermia treatments utilize the heat generated by magnetic nanoparticles stimulated by an alternating magnetic field. Therefore, analytical methods are required to precisely characterize the dissipated thermal energy and to evaluate potential amplifying or diminishing factors in order to ensure optimal treatment conditions. Here, we present a lock-in thermal imaging setup specifically designed to thermally measure magnetic nanoparticles and we investigate theoretically how the various experimental parameters may influence the measurement. We compare two detection methods and highlight how an affordable microbolometer can achieve identical sensitivity with respect to a thermal camera-based system by adapting the measurement time. Furthermore, a numerical model is used to demonstrate the optimal stimulation frequency, the degree of nanomaterial heating power, preferential sample holder dimensions and the extent of heat losses to the environment. Using this model, we also revisit some technical assumptions and experimental results that previous studies have stated and suggest an optimal experimental configuration.

2014 ◽  
Vol 21 (3) ◽  
pp. 284-290 ◽  
Author(s):  
M. Bonmarin ◽  
F.-A. Le Gal

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1757
Author(s):  
Yesica Vicente-Martínez ◽  
Manuel Caravaca ◽  
Antonio Soto-Meca ◽  
Miguel Ángel Martín-Pereira ◽  
María del Carmen García-Onsurbe

This paper presents a novel procedure for the treatment of contaminated water with high concentrations of nitrates, which are considered as one of the main causes of the eutrophication phenomena. For this purpose, magnetic nanoparticles functionalized with silver (Fe3O4@AgNPs) were synthesized and used as an adsorbent of nitrates. Experimental conditions, including the pH, adsorbent and adsorbate dose, temperature and contact time, were analyzed to obtain the highest adsorption efficiency for different concentration of nitrates in water. A maximum removal efficiency of 100% was reached for 2, 5, 10 and 50 mg/L of nitrate at pH = 5, room temperature, and 50, 100, 250 and 500 µL of Fe3O4@AgNPs, respectively. The characterization of the adsorbent, before and after adsorption, was performed by energy dispersive X-ray spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. Nitrates can be desorbed, and the adsorbent can be reused using 500 µL of NaOH solution 0.01 M, remaining unchanged for the first three cycles, and exhibiting 90% adsorption efficiency after three regenerations. A deep study on equilibrium isotherms reveals a pH-dependent behavior, characterized by Langmuir and Freundlich models at pH = 5 and pH = 1, respectively. Thermodynamic studies were consistent with physicochemical adsorption for all experiments but showed a change from endothermic to exothermic behavior as the temperature increases. Interference studies of other ions commonly present in water were carried out, enabling this procedure as very selective for nitrate ions. In addition, the method was applied to real samples of seawater, showing its ability to eliminate the total nitrate content in eutrophized waters.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5529-5536
Author(s):  
Peter E. Kidibule ◽  
Jessica Costa ◽  
Andrea Atrei ◽  
Francisco J. Plou ◽  
Maria Fernandez-Lobato ◽  
...  

Chitin-active enzymes are of great biotechnological interest due to the wide industrial application of chitinolytic materials.


2021 ◽  
pp. 160448
Author(s):  
Evelyn C.S. Santos ◽  
Jamili A. Cunha ◽  
Marcel G. Martins ◽  
Bianca M. Galeano-Villar ◽  
Richard J. Caraballo-Vivas ◽  
...  

Author(s):  
James Tomaszewski ◽  
Richard Branam ◽  
William Hargus ◽  
Taylor Matlock

2013 ◽  
Vol 113 (17) ◽  
pp. 17A313 ◽  
Author(s):  
Jinu Kim ◽  
Jinbae Kim ◽  
Jongryoul Kim ◽  
Ki Hyeon Kim

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1163
Author(s):  
So-Youn Youn ◽  
Ji-Youn Lee ◽  
You-Chan Bae ◽  
Yong-Kuk Kwon ◽  
Hye-Ryoung Kim

Infectious bronchitis viruses (IBVs) are evolving continuously via genetic drift and genetic recombination, making disease prevention and control difficult. In this study, we undertook genetic and pathogenic characterization of recombinant IBVs isolated from chickens in South Korea between 2003 and 2019. Phylogenetic analysis showed that 46 IBV isolates belonged to GI-19, which includes nephropathogenic IBVs. Ten isolates formed a new cluster, the genomic sequences of which were different from those of reference sequences. Recombination events in the S1 gene were identified, with putative parental strains identified as QX-like, KM91-like, and GI-15. Recombination detection methods identified three patterns (rGI-19-I, rGI-19-II, and rGI-19-III). To better understand the pathogenicity of recombinant IBVs, we compared the pathogenicity of GI-19 with that of the rGI-19s. The results suggest that rGI-19s may be more likely to cause trachea infections than GI-19, whereas rGI-19s were less pathogenic in the kidney. Additionally, the pathogenicity of rGI-19s varied according to the genotype of the major parent. These results indicate that genetic recombination between heterologous strains belonging to different genotypes has occurred, resulting in the emergence of new recombinant IBVs in South Korea.


Sign in / Sign up

Export Citation Format

Share Document