scholarly journals Broadened Angle-Insensitive Near-Perfect Absorber Based on Mie Resonances in Amorphous Silicon Metasurface

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1733 ◽  
Author(s):  
Jiangnan Si ◽  
Shuang Liu ◽  
Weiji Yang ◽  
Xuanyi Yu ◽  
Jialin Zhang ◽  
...  

A broadband near-perfect absorber is analyzed by an amorphous silicon (a-Si) hook shaped nanostructure metasurface. The transmission and reflection coefficients of the metasurface are investigated in the point electric and magnetic dipole approximation. By combining square and semicircle nanostructures, the effective polarizabilities of the a-Si metasurface calculated based on discrete dipole approximation (DDA) exhibit broadened peaks of electric dipole (ED) and magnetic dipole (MD) Mie resonances. The optical spectra of the metasurface are simulated with different periods, in which suppressed transmission are shifted spectrally to overlap with each other, leading to broadened enhanced absorption induced by interference of ED and MD Mie resonances. The angle insensitive absorption of the metasurface arrives 95% in simulation and 85% in experiment in spectral range from 564 nm to 584 nm, which provides potential applicability in nano-photonic fields of energy harvesting and energy collection.

2018 ◽  
Vol 32 (15) ◽  
pp. 1850163 ◽  
Author(s):  
H. M. Mousa ◽  
M. M. Shabat ◽  
A. K. Ouda ◽  
D. M. Schaadt

This paper tackles anti-reflection coating structure for silicon solar cell where conductive nanoparticle (CNP) film is sandwiched between a semi-infinite glass cover and a semi-infinite silicon substrate. The transmission and reflection coefficients are derived by the transfer matrix method and simulated for values of unit cell sizes, gab widths in visible and near-infrared radiation. We also illustrated the dependence of the absorption, transmission and reflection coefficients on several angles of incidence of the transverse magnetic polarized (TM) waves. We found out that reflection decreases by the increase of incident angle to 50[Formula: see text]. If nanoparticles are suitably located and sized at gab width of 3.5 nm, unit cell of 250 nm and CNP layer thickness of 150 nm, the absorptivity of the structure achieves 100%.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3499
Author(s):  
Anatoly B. Rinkevich ◽  
Dmitry V. Perov ◽  
Yuriy I. Ryabkov

The microwave properties of a composite material containing flakes of finemet-type nanocrystalline alloy placed in the epoxy matrix have been investigated. Two compositions have been studied: with 15% and 30% flakes. Frequency dependences of transmission and reflection coefficients are measured in the frequency range from 12 to 38 GHz. The dielectric permittivity and magnetic permeability are obtained, and the microwave losses are calculated. The dependences of transmission and reflection coefficients have been drawn as functions of wave frequency and thickness of the composite material, taking into account the frequency dependences of permittivity and permeability. The regions of maximal and minimal microwave absorption have been defined. The influence of wave interference on the frequency dependence of microwave absorption is studied.


Author(s):  
O. Langueur ◽  
M. Merad ◽  
A. Rassoul

In this paper, we study the Duffin–Kemmer–Petiau (DKP) equation in the presence of a smooth barrier in dimensions space–time (1+1) dimensions. The eigenfunctions are determined in terms of the confluent hypergeometric function [Formula: see text]. The transmission and reflection coefficients are calculated, special cases as a rectangular barrier and step potential are analyzed. A numerical study is presented for the transmission and reflection coefficients graphs for some values of the parameters [Formula: see text] are plotted.


Author(s):  
Hironori Tohmyoh

Abstract This paper presents the materials evaluation and environmental monitoring techniques utilizing the acoustic resonance, which have been developed by the authors. When the ultrasound passes through thin layer, the transmission and reflection coefficients take their maximum and the minimum values at the resonant frequency. We call this acoustic resonance. The acoustic properties of a polymer film, e.g., the acoustic impedance, ultrasonic velocity, and density, can be determined by observing the acoustic resonance, which occurs at the water/film/reflection plate interface. Acoustic resonance occurs at the reflection plate/film/outer environment interface sensitively changes depending on the outer environment. With use of this, the temperature of the water as an outer environment is tried to be monitored.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950087 ◽  
Author(s):  
Luis Puente ◽  
Carlos Cocha ◽  
Clara Rojas

We present a new potential barrier that presents the phenomenon of superradiance when the reflection coefficient [Formula: see text] is greater than one. We calculated the transmission and reflection coefficients for three different regions. The results are compared with those obtained for the hyperbolic tangent potential barrier and the step potential barrier. We also present the solution of the Klein–Gordon equation with the Lambert-[Formula: see text] potential barrier in terms of the Heun Confluent functions.


Sign in / Sign up

Export Citation Format

Share Document