scholarly journals Novel Surface-Modified Bilosomes as Functional and Biocompatible Nanocarriers of Hybrid Compounds

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2472
Author(s):  
Ewelina Waglewska ◽  
Agata Pucek-Kaczmarek ◽  
Urszula Bazylińska

In the present contribution, we demonstrate a new approach for functionalization of colloidal nanomaterial consisting of phosphatidylcholine/cholesterol-based vesicular systems modified by FDA-approved biocompatible components, i.e., sodium cholate hydrate acting as a biosurfactant and Pluronic P123—a symmetric triblock copolymer comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks Eight novel bilosome formulations were prepared using the thin-film hydration method followed by sonication and extrusion in combination with homogenization technique. The optimization studies involving the influence of the preparation technique on the nanocarrier size (dynamic light scattering), charge (electrophoretic light scattering), morphology (transmission electron microscopy) and kinetic stability (backscattering profiles) revealed the most promising candidate for the co-loading of model active compounds of various solubility; namely, hydrophilic methylene blue and hydrophobic curcumin. The studies of the hybrid cargo encapsulation efficiency (UV-Vis spectroscopy) exhibited significant potential of the formulated bilosomes in further biomedical and pharmaceutical applications, including drug delivery, anticancer treatment or diagnostics.

2011 ◽  
Vol 413 ◽  
pp. 148-153 ◽  
Author(s):  
Xue Na Hu ◽  
Ya Han ◽  
Jia Yan Li ◽  
Jun Yan Wu ◽  
Jian Rong Chen ◽  
...  

Thiol-functionalized MCM-48 (SH-MCM-48) was synthesized by co-condensation method, with co-templates of cetyltrimethylammonium bromide (CTAB) and nonionic poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) triblock copolymer (Pluronic P123). The resulting material was characterized by XRD and FT-IR spectrum. The potential of SH-MCM-48 for adsorption Zn (II) from aqueous solution was examined. Batch adsorption studies were carried out to investigate the effect of experimental parameters including pH, metal ions concentration and adsorption time. The maximum adsorption capacities of Zn (II) onto SH-MCM-48 were 30.12, 34.01 and 38.02 mg g-1 at the temperature of 303, 313 and 323K, respectively. The adsorption kinetics data were found to follow the pseudo-second-order kinetic model, and adsorption isotherms were fitted well with Langmuir and Freundlich models. Moreover, the adsorption thermodynamic parameters (△G0, △H0 and △S0) were measured, and indicated that the adsorption was an exothermic and spontaneous process.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3435
Author(s):  
Elżbieta Sąsiadek ◽  
Malwina Jaszczak ◽  
Joanna Skwarek ◽  
Marek Kozicki

This work reports on the surface-modified woven fabrics for use as UV radiation sensors. The cotton and polyamide fabrics were printed with radiochromic hydrogels using a screen-printing method. The hydrogels used as a printing paste were composed of water, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127) as a gel matrix and nitro blue tetrazolium chloride as a radiation-sensitive compound. The development of the hydrogels’ colour occurs after exposure to UV radiation and its intensity increases with increasing absorbed dose. The features of the NBT-Pluronic F-127 radiochromic hydrogels and the fabrics printed with the hydrogels were examined using UV-Vis and reflectance spectrophotometry as well as scanning electron microscopy (SEM). The effects of NBT concentration and UV radiation type (UVA, UVB, UVC) on dose responses of the hydrogels and printed fabrics were also examined. The results obtained reveal that the fabrics printed with NBT-Pluronic F-127 hydrogels can be potentially useful as UV radiation sensors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1362
Author(s):  
Joao Augusto Oshiro ◽  
Angelo Lusuardi ◽  
Elena M. Beamud ◽  
Leila Aparecida Chiavacci ◽  
M. Teresa Cuberes

Ureasil-Poly(ethylene oxide) (ureasil-PEO500) and ureasil-Poly(propylene oxide) (u-PPO400) films, unloaded and loaded with dexamethasone acetate (DMA), have been investigated by carrying out atomic force microscopy (AFM), ultrasonic force microscopy (UFM), contact-angle, and drug release experiments. In addition, X-ray diffraction, small angle X-ray scattering, and infrared spectroscopy have provided essential information to understand the films’ structural organization. Our results reveal that while in u-PEO500 DMA occupies sites near the ether oxygen and remains absent from the film surface, in u-PPO400 new crystalline phases are formed when DMA is loaded, which show up as ~30–100 nm in diameter rounded clusters aligned along a well-defined direction, presumably related to the one defined by the characteristic polymer ropes distinguished on the surface of the unloaded u-POP film; occasionally, larger needle-shaped DMA crystals are also observed. UFM reveals that in the unloaded u-PPO matrix the polymer ropes are made up of strands, which in turn consist of aligned ~180 nm in diameter stiffer rounded clusters possibly formed by siloxane-node aggregates; the new crystalline phases may grow in-between the strands when the drug is loaded. The results illustrate the potential of AFM-based procedures, in combination with additional physico-chemical techniques, to picture the nanostructural arrangements in polymer matrices intended for drug delivery.


Sign in / Sign up

Export Citation Format

Share Document