scholarly journals Synthesis and Characterization of Chitosan-Based Nanodelivery Systems to Enhance the Anticancer Effect of Sorafenib Drug in Hepatocellular Carcinoma and Colorectal Adenocarcinoma Cells

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 497
Author(s):  
Umme Ruman ◽  
Kalaivani Buskaran ◽  
Giorgia Pastorin ◽  
Mas Jaffri Masarudin ◽  
Sharida Fakurazi ◽  
...  

The formation of two nanodelivery systems, Sorafenib (SF)-loaded chitosan (SF-CS) and their folate-coated (SF-CS-FA) nanoparticles (NPs), were developed to enhance SF drug delivery on human Hepatocellular Carcinoma (HepG2) and Colorectal Adenocarcinoma (HT29) cell lines. The ionic gelation method was adopted to synthesize the NPs. The characterizations were performed by DLS, FESEM, TEM, XRD, TGA, FTIR, and UV-visible spectroscopy. It was found that 83.7 ± 2.4% and 87.9 ± 1.1% of encapsulation efficiency; 18.2 ± 1.3% and 19.9 ± 1.4% of loading content; 76.3 ± 13.7 nm and 81.6 ± 12.9 nm of hydrodynamic size; 60–80 nm and 70–100 nm of TEM; and FESEM sizes of near-spherical shape were observed, respectively, for SF-CS and SF-CS-FA nanoparticles. The SF showed excellent release from the nanoparticles under pH 4.8 PBS solution, indicating a good delivery system for tumor cells. The cytotoxicity study revealed their better anticancer action towards HepG2 and HT29 cell lines compared to the free sorafenib. Moreover, both NPs systems showed negligible toxicity to normal Human Dermal Fibroblast adult cells (HDFa). This is towards an enhanced anticancer drug delivery system with sustained-release properties for better cancer management.

2021 ◽  
Author(s):  
Umme Ruman ◽  
Kalaivani Buskaran ◽  
Saifullah Bullo ◽  
Georgia Pastorin ◽  
Mas Jaffri Masarudin ◽  
...  

Abstract Purpose: Here, we reported the sysnthesis of two clinically used drugs, 5-fluorouracil (5FU) and Sorafenib (SF)-loaded in chitosan nanoparticles and their priliminary study of therapeutics effect on hepatocellular carcinoma and colorectal adenocarcinoma cell lines. We have formulated chitosan nanoparticles (CS NPs) loaded dual (SF and 5-FU) drugs nanodelivery system for SF/5FU-CS NPs and their coating version with folic acid (FA) for SF/5FU-CS-FA NPS. Human hepatocellular carcinoma (HepG2) and colorectal adenocarcinoma (HT29) cell lines were selected for in vitro cytotoxicity studies to evaluate the preliminary anticancer efficacy of both nanoparticles.Characterization: The physiochemical characterization of SF/5FU-CS NPs and SF/5FU-CS-FA NPs were investigated by DLS, FESEM, HRTEM, EDX, XRD, TGA, FTIR, and HPLC methods.Results: DLS study has shown the size of SF/5FU-CS and SF/5FU-CS-FA nanoparticles were about 78±14 nm and 142±25 nm, respectively. HRTEM and FESEM studies confirmed the spherical shape with size of 60-70nm for SF/5FU-CS and 90-150 nm for SF/5FU-CS-FA NPs. The XRD results indicated the drug loading and folate-coating comfirmation. FTIR peaks confirmed the presence of drugs in the nanoparticles, as well as folate-coating on the surface of the nanoparticles. TGA results demonstrated the thermostability of both nanoparticles. The release profiles of SF and 5FU from the two designed NPs were found to be in a sustained manner according to the pseudo-second-order kinetics model indicating a good delivery system for tumor cells. The cytotoxicity studies confirmed the better anti-cancer activity of the nanoparticles compared to the free 5-fluorouracil and sorafenib against liver cancer cells, HepG2 and colon cancer cells, HT29. Conversely, both NPs were found not toxic towards normal human dermal fibroblast cells (HDF) cells.


2018 ◽  
Vol 54 (87) ◽  
pp. 12353-12356 ◽  
Author(s):  
Hardev Singh ◽  
Seo Jin Kim ◽  
Dong Hoon Kang ◽  
Hye-Ri Kim ◽  
Amit Sharma ◽  
...  

Herein, we explore glycyrrhetinic acid (GA) as an active targeting ligand for hepatocellular carcinoma (HCC) using a small molecule approach.


2012 ◽  
Vol 56 ◽  
pp. S115
Author(s):  
A. Mazzocca ◽  
F. Baldassarre ◽  
V. Vergaro ◽  
S. Leporatti ◽  
G. Ciccarella ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Muhammad Alif Mazlan ◽  
Muhammad Lokman Md. Isa ◽  
Moustafa Ibrahim

Abstract Background The primary cause of cancer is gene mutation which allows the growth of abnormal and damaged cells. Nutrition is one of the key factors that either increases or decreases the risk of cancer. Mannose has been found in many fruits such as oranges, apples and berries. Mannose has been linked to increase the risk factors or potential therapeutic for cancers. However, insufficient information is available on the effects of high mannose concentration on the normal and cancer cell lines. This study aimed to evaluate the viability patterns of human cancer and normal cell lines treated with mannose. Human gingival fibroblast (HGF), skin malignant melanoma (A375) and colorectal adenocarcinoma (HT29) cell lines were cultured and treated with additional mannose in three respective concentrations: 1 mg/ml, 5 mg/ml and 10 mg/ml. Then, cell viability was measured using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)-assay. Results The HGF cells’ percentage pattern of viability showed a rapid decline of nearly 95% on the third day of treatment. A375 cells were able to survive in high mannose condition as the cell viability percentage was at the highest value on Day 5. Meanwhile, HT29 cells showed declining cell viability pattern when treated with mannose. The data exhibited significance; the p value was less than 0.001. Conclusions High mannose concentration can be toxic to HGF. In addition, A375 is adaptive to mannose at all concentrations in which it shares the same pattern with the untreated group. However, the cell viability pattern for HT29 cell is declining.


Sign in / Sign up

Export Citation Format

Share Document