scholarly journals Methylglyoxal Adducts Levels in Blood Measured on Dried Spot by Portable Near-Infrared Spectroscopy

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2432
Author(s):  
Giuseppe Bonapace ◽  
Francesco Gentile ◽  
Nicola Coppedé ◽  
Maria Laura Coluccio ◽  
Virginia Garo ◽  
...  

The altered glucose metabolism characterising cancer cells determines an increased amount of methylglyoxal in their secretome. Previous studies have demonstrated that the methylglyoxal, in turn, modifies the protonation state (PS) of soluble proteins contained in the secretomes of cultivated circulating tumour cells (CTCs). In this study, we describe a method to assess the content of methylglyoxal adducts (MAs) in the secretome by near-infrared (NIR) portable handheld spectroscopy and the extreme learning machine (ELM) algorithm. By measuring the vibration absorption functional groups containing hydrogen, such as C-H, O-H and N-H, NIR generates specific spectra. These spectra reflect alterations of the energy frequency of a sample bringing information about its MAs concentration levels. The algorithm deciphers the information encoded in the spectra and yields a quantitative estimate of the concentration of MAs in the sample. This procedure was used for the comparative analysis of different biological fluids extracted from patients suspected of having cancer (secretome, plasma, serum, interstitial fluid and whole blood) measured directly on the solute left on a surface upon a sample-drop cast and evaporation, without any sample pretreatment. Qualitative and quantitative regression models were built and tested to characterise the different levels of MAs by ELM. The final model we selected was able to automatically segregate tumour from non-tumour patients. The method is simple, rapid and repeatable; moreover, it can be integrated in portable electronic devices for point-of-care and remote testing of patients.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasia Spyrogianni ◽  
Charlotte Gourmel ◽  
Leopold Hofmann ◽  
Jessica Marbach ◽  
Jean-Christophe Leroux

AbstractReliable ammonia quantification assays are essential for monitoring ammonemia in patients with liver diseases. In this study, we describe the development process of a microplate-based assay for accurate, precise, and robust ammonia quantification in biological fluids, following regulatory guidelines on bioanalytical method validation. The assay is based on transmembrane pH-gradient polymersomes that encapsulate a pH-sensitive ratiometric fluorophore, the fluorescence signal of which correlates with the ammonia concentration in the sample. Using a four-parameter logistic regression, the assay had a large quantification range (30–800 μM ammonia). As for selectivity, the presence of amino acids or pyruvate (up to clinically relevant concentrations) showed no assay interference. In samples with low bilirubin levels, polymersomes containing the fluorophore pyranine provided accurate ammonia quantification. In samples with high bilirubin concentrations, billirubin’s optical interference was alleviated when replacing pyranine with a close to near-infrared hemicyanine fluorophore. Finally, the assay could correctly retrieve the ammonia concentration in ammonia-spiked human plasma samples, which was confirmed by comparing our measurements with the data obtained using a commercially available point-of-care device for ammonia.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5247 ◽  
Author(s):  
Vlad Shumeiko ◽  
Yossi Paltiel ◽  
Gili Bisker ◽  
Zvi Hayouka ◽  
Oded Shoseyov

A protease is an enzyme that catalyzes proteolysis of proteins into smaller polypeptides or single amino acids. As crucial elements in many biological processes, proteases have been shown to be informative biomarkers for several pathological conditions in humans, animals, and plants. Therefore, fast, reliable, and cost-effective protease biosensors suitable for point-of-care (POC) sensing may aid in diagnostics, treatment, and drug discovery for various diseases. This work presents an affordable and simple paper-based dipstick biosensor that utilizes peptide-encapsulated single-wall carbon nanotubes (SWCNTs) for protease detection. Upon enzymatic digestion of the peptide, a significant drop in the photoluminescence (PL) of the SWCNTs was detected. As the emitted PL is in the near-infrared region, the developed biosensor has a good signal to noise ratio in biological fluids. One of the diseases associated with abnormal protease activity is pancreatitis. In acute pancreatitis, trypsin concentration could reach up to 84 µg/mL in the urine. For proof of concept, we demonstrate the feasibility of the proposed biosensor for the detection of the abnormal levels of trypsin activity in urine samples.


2021 ◽  
Author(s):  
Anastasia Spyrogianni ◽  
Charlotte Gourmel ◽  
Leopold Hofmann ◽  
Jessica Marbach ◽  
Jean-Christophe Leroux

Abstract Reliable ammonia quantification assays are essential for monitoring ammonemia in patients with liver diseases. In this study, we describe the development process of a microplate-based assay for accurate, precise, and robust ammonia quantification in biological fluids, following regulatory guidelines on bioanalytical method validation. The assay is based on transmembrane pH-gradient polymersomes that encapsulate a pH-sensitive ratiometric fluorophore, the fluorescence signal of which correlates with the ammonia concentration in the sample. Using four-parameter logistic regression, the assay had a large quantification range (30–800 µM ammonia). As for selectivity, the presence of amino acids or pyruvate (up to clinically relevant concentrations) showed no assay interference. In samples with low bilirubin levels, polymersomes containing the fluorophore pyranine provided accurate ammonia quantification. In samples with high bilirubin concentrations, billirubin’s optical interference was alleviated when replacing pyranine with a close to near-infrared hemicyanine fluorophore. Finally, the assay could correctly retrieve the ammonia concentration in ammonia-spiked human plasma samples, which was confirmed by comparing our measurements with the data obtained using a commercially available point-of-care device for ammonia.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 236
Author(s):  
Rui Lou ◽  
Guangying Li ◽  
Xu Wang ◽  
Wenfu Zhang ◽  
Yishan Wang ◽  
...  

Antireflection and superhydrophilicity performance are desirable for improving the properties of electronic devices. Here, we experimentally provide a strategy of femtosecond laser preparation to create micro-nanostructures on the graphite surface in an air environment. The modified graphite surface is covered with abundant micro-nano structures, and its average reflectance is measured to be 2.7% in the ultraviolet, visible and near-infrared regions (250 to 2250 nm). The wettability transformation of the surface from hydrophilicity to superhydrophilicity is realized. Besides, graphene oxide (GO) and graphene are proved to be formed on the sample surface. This micro-nanostructuring method, which demonstrates features of high efficiency, high controllability, and hazardous substances zero discharge, exhibits the application for functional surface.


2021 ◽  
Vol 17 (2) ◽  
pp. 205-215
Author(s):  
Zhenbo Sun ◽  
Mingfang Luo ◽  
Jia Li ◽  
Ailing Wang ◽  
Xucheng Sun ◽  
...  

Imaging-guided cancer theranostic is a promising strategy for cancer diagnostic and therapeutic. Photodynamic therapy (PDT), as an approved treatment modality, is limited by the poor solubility and dispersion of photosensitizers (PS) in biological fluids. Herein, it is demonstrated that superparamagnetic iron oxide (SPIO)-based nanoparticles (SCFs), prepared by conjugated with Chlorin e6 (Ce6) and modified with folic acid (FA) on the surface, can be used as versatile drug delivery vehicles for effective PDT. The nanoparticles are great carriers for photosensitizer Ce6 with an extremely high loading efficiency. In vitro fluorescence imaging and in vivo magnetic resonance imaging (MRI) results indicated that SCFs selectively accumulated in tumor cells. Under near-infrared laser irradiation, SCFs were confirmed to be capable of inducing low cell viability of RM-1 cells In vitro and displaying efficient tumor ablation with negligible side effects in tumor-bearing mice models.


2019 ◽  
Vol 10 (2) ◽  
pp. 112-128
Author(s):  
Begum Canaslan Akyar ◽  
Özkan Sapsaglam

Abstract Today’s children are born into a digital world and are exposed to various electronic devices and digital contents both in the home environment and other environments since the first years of life. Children, who are a natural recipient of the environment in which they live, are exposed to the effects of the digital world at different levels and reflect these effects in different ways. The purpose of the reported study is to investigate if preschoolers’ daily media usage habits affects their drawings. This study is planned according to the case study design of qualitative research methods. The study was conducted with 15 preschoolers and their parents. There were nine boys and six girls in the study. The preschoolers’ drawings and their parents’ interview data were analyzed by using the descriptive analyzing method. The study result shows that there are differences between boys and girls media usage habits. Boys spend more time with media tools than girls. Additionally, boys are exposed to more inappropriate content because of their preferences. The analysis of their drawings revealed that boys are more affected than girls from media contents since boys’ drawings include more characters from media than girls. It can thus be suggested that media tools might be harmful when they are used in a developmentally inappropriate way, and excessive media tool usage has negative impact on children. Therefore, the reported study recommends that parents and caregivers take some precautions to limit preschoolers from spending time with media tools and to control content of children’s activity.


2021 ◽  
pp. 221-226
Author(s):  
Kirsten Hornbeak ◽  
◽  
Jay Duchnick ◽  
Anthony Medak ◽  
Peter Lindholm ◽  
...  

Historically, electronic devices have been generally prohibited during hyperbaric oxygen (HBO2) therapy due to risk of fire in a pressurized, oxygen-rich environment. Point-of-care ultrasound (POCUS), however, has emerged as a useful imaging modality in diverse clinical settings. Hyperbaric chambers treating critically ill patients would benefit from the application of POCUS at pressure to make real-time patient assessments. Thus far, POCUS during HBO2 therapy has been limited due to required equipment modifications to meet safety standards. Here we demonstrate proof of concept, safety, and successful performance of an off-the-shelf handheld POCUS system (SonoSite iViz) in a clinical hyperbaric environment without need for modification.


Sign in / Sign up

Export Citation Format

Share Document