scholarly journals Facile Fabrication of Three-Dimensional Fusiform-Like α-Fe2O3 for Enhanced Photocatalytic Performance

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2650
Author(s):  
Moyan Li ◽  
Hongjin Liu ◽  
Shaozhi Pang ◽  
Pengwei Yan ◽  
Mingyang Liu ◽  
...  

α-Fe2O3 fusiform nanorods were prepared by a simple hydrothermal method employing the mixture of FeCl3·6H2O and urea as raw materials. The samples were examined by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and UV–vis diffuse reflectance spectra (UV–DRS). Its visible-light photocatalytic performances were evaluated by photocatalytic decolorization methylene blue (MB) in visible light irradiation. It was found that pure phase α-Fe2O3 nanorods with a length of about 125 nm and a diameter of 50 nm were successfully synthesized. The photocatalytic decolorization of MB results indicated that α-Fe2O3 nanorods showed higher photocatalytic activity than that of commercial Fe2O3 nanoparticles—these are attributed to its unique three-dimensional structure and lower electron-hole recombination rate.

NANO ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. 1650114 ◽  
Author(s):  
Dan Li ◽  
Jianwei Li ◽  
Caiqin Han ◽  
Xinsheng Zhao ◽  
Haipeng Chu ◽  
...  

Few-layered MoS2 nanostructures were successfully synthesized by a simple hydrothermal method without the addition of any catalysts or surfactants. Their morphology, structure and photocatalytic activity were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electrochemical impedance spectra and UV-Vis absorption spectroscopy, respectively. These results show that the MoS2 nanostructures synthesized at 180[Formula: see text]C exhibit an optimal visible light photocatalytic activity (99%) in the degradation of Rhodamine B owing to the relatively easier adsorption of pollutants, higher visible light absorption and lower electron–hole pair recombination.


2017 ◽  
Vol 77 (5) ◽  
pp. 1204-1212 ◽  
Author(s):  
Zhongjie Zhang ◽  
Shuwen Shao ◽  
Jingjing Dang ◽  
Changyu Lu ◽  
Fang Qin ◽  
...  

Abstract The ZnWO4/Ag3PO4 nanocomposites synthesized by simple precipitation processes were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectra. The results indicated that the ZnWO4 nanorods dispersed well on the surface of Ag3PO4 particles and ball-and-rod structure p-n heterojunctions were successfully fabricated. In subsequent degradation experiments of methyl orange (MO), ZnWO4/Ag3PO4 composites showed the highest photocatalytic activity compared to pure Ag3PO4 and ZnWO4, due to the presence of ZnWO4/Ag3PO4 heterojunctions, which could separate and transfer the electron–hole pairs generated by visible light and enhance the photocatalytic performance of the catalysts. The band gap structure and degradation mechanism of the enhanced photocatalytic materials are also discussed in this article. In conclusion, the ZnWO4/Ag3PO4 composite is a promising and excellent photocatalyst for the degradation of dye wastewater under visible light irradiation.


Author(s):  
T.D. Pollard ◽  
P. Maupin

In this paper we review some of the contributions that electron microscopy has made to the analysis of actin and myosin from nonmuscle cells. We place particular emphasis upon the limitations of the ultrastructural techniques used to study these cytoplasmic contractile proteins, because it is not widely recognized how difficult it is to preserve these elements of the cytoplasmic matrix for electron microscopy. The structure of actin filaments is well preserved for electron microscope observation by negative staining with uranyl acetate (Figure 1). In fact, to a resolution of about 3nm the three-dimensional structure of actin filaments determined by computer image processing of electron micrographs of negatively stained specimens (Moore et al., 1970) is indistinguishable from the structure revealed by X-ray diffraction of living muscle.


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 899
Author(s):  
Murendeni P. Ravele ◽  
Opeyemi A. Oyewo ◽  
Damian C. Onwudiwe

Pure-phase Cu2−xS (x = 1, 0.2) nanoparticles have been synthesized by the thermal decomposition of copper(II) dithiocarbamate as a single-source precursor in oleylamine as a capping agent. The compositions of the Cu2−xS nanocrystals varied from CuS (covellite) through the mixture of phases (CuS and Cu7.2S4) to Cu9S5 (digenite) by simply varying the temperature of synthesis. The crystallinity and morphology of the copper sulfides were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which showed pure phases at low (120 °C) and high (220 °C) temperatures and a mixture of phases at intermediate temperatures (150 and 180 °C). Covellite was of a spherical morphology, while digenite was rod shaped. The optical properties of these nanocrystals were characterized by UV−vis–NIR and photoluminescence spectroscopies. Both samples had very similar absorption spectra but distinguishable fluorescence properties and exhibited a blue shift in their band gap energies compared to bulk Cu2−xS. The pure phases were used as catalysts for the photocatalytic degradation of tetracycline (TC) under visible-light irradiation. The results demonstrated that the photocatalytic activity of the digenite phase exhibited higher catalytic degradation of 98.5% compared to the covellite phase, which showed 88% degradation within the 120 min reaction time using 80 mg of the catalysts. The higher degradation efficiency achieved with the digenite phase was attributed to its higher absorption of the visible light compared to covellite.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850051 ◽  
Author(s):  
Yanan Li ◽  
Zhongmin Liu ◽  
Yaru Li ◽  
Yongchuan Wu ◽  
Jitao Chen ◽  
...  

The Bi2S3-TiO2-RGO composites were synthesized by a facile one-step hydrothermal method and applied for the photocatalytic degradation of Rhodamine B (Rh B) under the visible light. The Bi2S3-TiO2-RGO composites were characterized by transmission electron microscopy, X-ray diffraction, Raman and Fourier transform infrared spectrometer. The results indicated that the Bi2S3-TiO2-RGO composites were successfully prepared, and Ti-O-C and S-C bonds were existing among Bi2S3, TiO2 as well as RGO. Furthermore, the photocatalytic ability of Bi2S3-TiO2-RGO composites was excellent under visible light due to its responding to the whole visible light region, low recombination rate of photogenerated electron–hole pairs and relatively negative conduction band. Rh B photocatalytic degradation rate was 99.5% after 50[Formula: see text]min and still could reach 98.4% after five cycles. Finally, a formation mechanism as well as a photocatalytic mechanism of Bi2S3-TiO2-RGO composites were proposed based on the experimental results.


2011 ◽  
Vol 47 (1) ◽  
pp. 73-78 ◽  
Author(s):  
E. Darezereshki ◽  
F. Bakhtiari

In this study CuO nanoparticles were prepared via direct thermal decomposition method using basic copper sulphates as wet chemically synthesized precursor which was calcined in air at 750?C for 2h. Samples were characterized by thermogravimetric (TG-DSC), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), infrared spectrum (IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD, EDS, and IR results indicated that the synthesized CuO particles were pure. The SEM and TEM results showed that the CuO nanoparticles were of approximate spherical shape, and 170?5 nm in size. Using this method, Cuo nanoparticles could be produced without using organic solvent, expensive raw materials, and complicated equipment.


2021 ◽  
Vol 1035 ◽  
pp. 1043-1049
Author(s):  
Di Xiang ◽  
Chang Long Shao

A simple route has been developed for the synthesis of Ag2O/ZnO heterostructures and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) spectroscopy analysis. Considering the porous structure of Ag2O/ZnO, the photocatalytic degradation for the organic dyes, such as eosin red (ER), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB), under visible light irradiation was investigated in detail. Noticeably, Ag2O/ZnO just took 40 min to degrade 96 % MB. The rate of degradation using the Ag2O/ZnO heterostructures was 2.3 times faster than that of the bare porous ZnO nanospheres under visible light irradiation due to that the recombination of the photogenerated charge was inhibited greatly in the p-type Ag2O and n-type ZnO semiconductor. So the Ag2O/ZnO heterostuctures showed the potential application on environmental remediation.


2007 ◽  
Vol 121-123 ◽  
pp. 441-444
Author(s):  
Y.C. Chen ◽  
Y.G. Zhang

BaF2 nanorods were synthesized by hydrothermal microemulsion method using sodium fluoride (NaF) and barium chloride (BaCl2) as the raw materials. The as-prepared products were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The results showed that the products were composed of BaF2 nanorods with diameters of 18-62 nm and lengths up to 1μm. A directed aggregation growth process mediated by the microemulsion droplet building blocks is proposed for the formation of BaF2 nanorods. Further work is in progress to evaluate the possibility of synthesizing other fluoride 1D nanostructures using a similar method.


2017 ◽  
Vol 751 ◽  
pp. 807-812
Author(s):  
Tuangphorn Prasitthikun ◽  
X. Wu ◽  
Tsugio Sato ◽  
Charusporn Mongkolkachit ◽  
Pornapa Sujaridworakun

High efficiency BiOBr/GO composites photocatalyst were successfully synthesized via a facile precipitation method. The precursors were prepared by dissolving Bi (NO3)3.5H2O and KBr in glycerol and distilled water, respectively. Various amounts (0.1-2 wt%) of graphene oxide were added into the mixed solution precursors, and stirred at room temperature to get precipitated powder without further heat treatment. The obtained products were characterized for phase, morphology, optical properties and surface area by X-ray diffraction (XRD), transmission electron microscopy (TEM), filed-emission scanning electron microscopy (FE-SEM), UV-Vis diffuse reflection spectroscopy (DRS) and Brunauer–Emmett–Teller (BET), respectively. The morphology and structure of as-synthesized samples were composed of numerous fine plates of BiOBr dispersed on the GO sheets. The photocatalytic activities of BiOBr/GO composites were evaluated by rhodamine B degradation under visible light irradiation. As the results, the significant increase in photodegradation of BiOBr/GO composite comparing with pure BiOBr was observed. Among all samples, the composite with 1 wt% of graphene oxide showed the highest photocatalytic performance.


Sign in / Sign up

Export Citation Format

Share Document