scholarly journals Highly Sensitive and Stable Copper-Based SERS Chips Prepared by a Chemical Reduction Method

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2770
Author(s):  
Pei Dai ◽  
Haochen Li ◽  
Xianzhi Huang ◽  
Nan Wang ◽  
Lihua Zhu

Cu chips are cheaper than Ag and Au chips for practical SERS applications. However, copper substrates generally have weak SERS enhancement effects and poor stability. In the present work, Cu-based SERS chips with high sensitivity and stability were developed by a chemical reduction method. In the preparation process, Cu NPs were densely deposited onto fabric supports. The as-prepared Cu-coated fabric was hydrophobic with fairly good SERS performance. The Cu-coated fabric was able to be used as a SERS chip to detect crystal violet, and it exhibited an enhancement factor of 2.0 × 106 and gave a limit of detection (LOD) as low as 10–8 M. The hydrophobicity of the Cu membrane on the fabric is favorable to cleaning background interference signals and promoting the stability of Cu NPs to environment oxidation. However, this Cu SERS chip was still poor in its long-term stability. The SERS intensity on the chip was decreased to 18% of the original one after it was stored in air for 60 days. A simple introduction of Ag onto the clean Cu surface was achieved by a replacement reaction to further enhance the SERS performances of the Cu chips. The Ag-modified Cu chips showed an increase of the enhancement factor to 7.6 × 106 due to the plasmonic coupling between Cu and Ag in nanoscale, and decreased the LOD of CV to 10–11 M by three orders of magnitude. Owing to the additional protection of Ag shell, the SERS intensity of the Cu-Ag chip after a two-month storing maintained 80% of the original intensity. The Cu-Ag SERS chips were also applied to detect other organics, and showing wide linearity range and low LOD values for the quantitative detection.

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 440 ◽  
Author(s):  
Guang Dong ◽  
Qingqing Lu ◽  
Haihui Jiang ◽  
Chunfang Li ◽  
Yingying Gong ◽  
...  

Porous coral-like Pd/C3N4-C nanocomposites are fabricated by a simple one-pot chemical reduction method. Their electrocatalytic performance is ~50% higher than a carbon-loaded palladium electrocatalyst (Pd/C) in alkaline media. This confirms that the glucose electrooxidation and sensing performance of a Pd/C can be improved by the synergy of graphitic carbon nitride (C3N4), though C3N4 exhibits poor electrical conductivity. Compared to Pd/C, the size of Pd nanoparticles in Pd/C3N4-C decreases. As a result, the activity of Pd/C3N4-C is enhanced due to the higher dispersion and the synergistic effect. Pd/C3N4-C presents a rapid response and high sensitivity to glucose. The sensitivity for glucose sensing at Pd/C3N4-C is 3.3 times that of at Pd/C in the range of 0.001–10 mM. In the lower range of 0.001–1 mM, the sensitivity at Pd/C3N4-C is ~10 times greater than Pd/C.


2015 ◽  
Vol 15 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Endang Susilowati ◽  
Triyono Triyono ◽  
Sri Juari Santosa ◽  
Indriana Kartini

Silver-chitosan nanocomposites colloidal was successfully performed by chemical reduction method at room temperature using glucose as reducing agent, sodium hydroxide (NaOH) as accelerator reagent, silver nitrate (AgNO3) as metal precursor and chitosan as stabilizing agent. Compared to other synthetic methods, this work is green and simple. The effect of the amount of NaOH, molar ratio of AgNO3 to glucose and AgNO3 concentration towards Localized Surface Plasmon Resonance (LSPR) absorption band of silver nanoparticles was investigated using UV-Vis spectrophotometer. The stability of the colloid was also studied for the first 16 weeks of storage at ambient temperature. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 402.4–414.5 nm. It is also shown that the absorption peak of LSPR were affected by NaOH amount, ratio molar AgNO3/glucose and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 6 to 18 nm as shown by TEM images. All colloidals were stable without any aggregation for 16 weeks after preparation. The newly prepared silver-chitosan nanocomposites colloidal may have potential for antibacterial applications.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


Author(s):  
Dung Chinh Trinh ◽  
Thi My Dung Dang ◽  
Kim Khanh Huynh ◽  
Eric Fribourg-Blanc ◽  
Mau Chien Dang

2020 ◽  
Author(s):  
Theertharaman G. ◽  
Nibin K. Mathew ◽  
Rohith K. Vinod ◽  
P. Saravanan ◽  
S. Balakumar

DYNA ◽  
2018 ◽  
Vol 85 (206) ◽  
pp. 69-78 ◽  
Author(s):  
Wilson Agudelo ◽  
Yuliet Montoya ◽  
John Bustamante

El uso de compuestos químicos más biocompatibles y renovables para la obtención de nanopartículas metálicas con propiedades y características deseadas, se convierte en una ruta alternativa para la reducción de riesgos ambientales y del grado de incompatibilidad de estas estructuras al interactuar con modelos biológicos para su posible aplicación en el área de la salud. El propósito de este trabajo se centró en el uso de sacarosa, como agente reductor de nanopartículas de oro y plata al emplear diferentes volúmenes de hidróxido de sodio. Las nanopartículas obtenidas fueron caracterizadas mediante espectrometría UV-visible, microscopía electrónica de transmisión TEM y espectroscopia infrarroja por transformada de Fourier FTIR, la cual permitió determinar los plasmones de resonancia superficial, tamaños de partícula experimentales y teóricos, morfología y cambios estructurales en el agente reductor, así como la influencia del hidróxido de sodio en el proceso de síntesis. Los resultados obtenidos confirman la formación de nanopartículas de oro y plata mediante la previa formación de azúcares reductores. Así mismo, la oxidación del grupo funcional de la glucosa a sales de ácido carboxílico.


Sign in / Sign up

Export Citation Format

Share Document