scholarly journals Comparative Study between Traditional and Nano Calcium Phosphate Fertilizers on Growth and Production of Snap Bean (Phaseolus vulgaris L.) Plants

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2913
Author(s):  
Mona F. Abd El-Ghany ◽  
Mohamady I. El-Kherbawy ◽  
Youssef A. Abdel-Aal ◽  
Samaa I. El-Dek ◽  
Tarek Abd El-Baky

Recently, nanofertilizers are being tested as a new technology, either for soil or foliar applications, to improve food production and with a reduced environmental impact. Nano calcium phosphate (NCaP) was successfully synthesized, characterized and applied in this study. A pot experiment was carried out in two successive seasons in 2016 and 2017 on (Phaseolus vulgaris L.) plants to obtain the best phosphorus treatments. The results were applied in a field experiment during the 2018–2019 season. Single superphosphate (SSP) at 30 and 60 kg P2O5 fed−1 and NCaP at 10%, 20% and 30% from the recommended dose were applied to the soil. Foliar application involved both monoammonium phosphate (MAP) at one rate of 2.5 g L−1 and NCaP at 5% and 10% from the MAP rate. The results of all experiments showed that NCaP significantly increased the shoot and root dry weights, the nutrient content in the shoot and root, the yield components, the nutrient concentration and crude protein percentage in pods of the snap bean plants compared with traditional P. The greatest increase was obtained from a 20% NCaP soil application in combination with a 5% NCaP foliar application. The present study recommends using NCaP as an alternative source of P to mitigate the negative effects of traditional sources.

1977 ◽  
Vol 34 (0) ◽  
pp. 551-563
Author(s):  
A.M.L. Neptune ◽  
T. Muraoka

An experiment was carried out with common bean (Phaseolus vulgaris, L.) in a Red Yellow Latossol, sandy phase, in order to study the influence of foliar spraying of the Hanway nutrient solution (NPKS) at grain filling stage on: 1) grain yield; 2) the uptake of fertilizer and soil nitrogen by this crop through the root system and 3) the efficiency of utilization of the nitrogen in the foliar spray solution by the grain. The results of this experiment showed that the foliar application of the Hanway solution with ammonium nitrate at the pod filling period caused severe leaf burn and grain yield was inferior to that of the plants which received a soil application of this fertilizer at the same stage. These facts can be attributed to the presence of ammonium nitrate in the concentration used. The composition of final spray was: 114,28 Kg NH4NO3 + 43,11 Kg potassium poliphosphate + 12,44 Kg potassium sulphate per 500 litres. The uptake of nitrogen fertilizer through the root system and the efficiency of its utilization was greater than that through the leaves.


1986 ◽  
Vol 66 (3) ◽  
pp. 669-675 ◽  
Author(s):  
M. N. J. WAHAB ◽  
D. H. DABBS ◽  
R. J. BAKER

Because of interest in maximizing production per unit area in regions where the land base is limited, the effects of planting density; (16–116 plants m−2) and planting design on pod yield of bush snap bean (Phaseolus vulgaris L.) were measured in replicated field trials with cv. Harvester in 1980 and 1981. Three planting designs were used: (a) conventional row designs with interplant spacing of 5 cm and interrow spacing of 20, 45, 80 and 125 cm; (b) square designs with interplant and interrow spacings both at 10, 15, 20 and 25 cm; and (c) triangle designs (honeycomb) with plants arranged at equal distances of 10, 15, 20 and 25 cm from each of their six nearest neighbors. In all three planting designs, higher planting densities (up to 116 plants m−2) gave higher pod yields per unit area. Except for the lower response in the square design in 1981, increases in yield with increasing density were similar for all designs in both years. Pod yields did not differ from one design to the other in 1980. In 1981, the triangle design gave the highest average yield and the row design gave the lowest average yield. The results confirm observations of yield advantages in planting designs which use equal spacing in all directions.Key words: Yield-density relationship, row spacing, honeycomb design, snap bean, Phaseolus vulgaris


2001 ◽  
Vol 13 (6) ◽  
pp. 293-299 ◽  
Author(s):  
K. Suzuki ◽  
Hiroyuki Takeda ◽  
Tadashi Tsukaguchi ◽  
Yoshinobu Egawa

Sign in / Sign up

Export Citation Format

Share Document