scholarly journals Degradation of Perovskite Thin Films and Solar Cells with Candle Soot C/Ag Electrode Exposed in a Control Ambient

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3463
Author(s):  
Mohammad Aminul Islam ◽  
Hamidreza Mohafez ◽  
Khan Sobayel ◽  
Sharifah Fatmadiana Wan Muhamad Hatta ◽  
Abul Kalam Mahmud Hasan ◽  
...  

Perovskite solar cells (PSCs) have already achieved efficiencies of over 25%; however, their instability and degradation in the operational environment have prevented them from becoming commercially viable. Understanding the degradation mechanism, as well as improving the fabrication technique for achieving high-quality perovskite films, is crucial to overcoming these shortcomings. In this study, we investigated details in the changes of physical properties associated with the degradation and/or decomposition of perovskite films and solar cells using XRD, FESEM, EDX, UV-Vis, Hall-effect, and current-voltage (I-V) measurement techniques. The dissociation, as well as the intensity of perovskite peaks, have been observed as an impact of film degradation by humidity. The decomposition rate of perovskite film has been estimated from the structural and optical changes. The performance degradation of novel planner structure PSCs has been investigated in detail. The PSCs were fabricated in-room ambient using candle soot carbon and screen-printed Ag electrode. It was found that until the perovskite film decomposed by 30%, the film properties and cell efficiency remained stable.

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2299 ◽  
Author(s):  
Apurba Mahapatra ◽  
Nishi Parikh ◽  
Pawan Kumar ◽  
Manoj Kumar ◽  
Daniel Prochowicz ◽  
...  

The last decade has witnessed the impressive progress of perovskite solar cells (PSCs), with power conversion efficiency exceeding 25%. Nevertheless, the unsatisfactory device stability and current–voltage hysteresis normally observed with most PSCs under operational conditions are bottlenecks that hamper their further commercialization. Understanding the electrical characteristics of the device during the aging process is important for the design and development of effective strategies for the fabrication of stable PSCs. Herein, electrochemical impedance spectroscopical (IS) analyses are used to study the time-dependent electrical characteristics of PSC. We demonstrate that both the dark and light ideality factors are sensitive to aging time, indicating the dominant existence of trap-assisted recombination in the investigated device. By analyzing the capacitance versus frequency responses, we show that the low-frequency capacitance increases with increasing aging time due to the accumulation of charges or ions at the interfaces. These results are correlated with the observed hysteresis during the current–voltage measurement and provide an in-depth understanding of the degradation mechanism of PSCs with aging time.


Solar RRL ◽  
2021 ◽  
Author(s):  
Anh Dinh Bui ◽  
Md Arafat Mahmud ◽  
Naeimeh Mozaffari ◽  
Rabin Basnet ◽  
The Duong ◽  
...  

2016 ◽  
Vol 18 (22) ◽  
pp. 14970-14975 ◽  
Author(s):  
Teresa S. Ripolles ◽  
Ajay K. Baranwal ◽  
Koji Nishinaka ◽  
Yuhei Ogomi ◽  
Germà Garcia-Belmonte ◽  
...  

In this work, a new current peak at forward bias in the dark current–voltage curves has been identified for standard mesoscopic perovskite solar cells.


2017 ◽  
Vol 5 (4) ◽  
pp. 1724-1733 ◽  
Author(s):  
Weiran Zhou ◽  
Jieming Zhen ◽  
Qing Liu ◽  
Zhimin Fang ◽  
Dan Li ◽  
...  

A new successive surface engineering method via a dual modification of TiO2 compact layer by PC61BM and C60-ETA was developed, affording dramatic efficiency enhancement with suppressed-hysteresis current–voltage response.


2019 ◽  
Vol 7 (41) ◽  
pp. 23739-23746 ◽  
Author(s):  
Chengbin Fei ◽  
Meng Zhou ◽  
Jonathan Ogle ◽  
Detlef-M. Smilgies ◽  
Luisa Whittaker-Brooks ◽  
...  

Large size cation (PA) was introduced into the grain boundary and film surface of the 3D perovskite to improve the solar cell efficiency and moisture stability.


2015 ◽  
Vol 3 (44) ◽  
pp. 22154-22161 ◽  
Author(s):  
Alba Matas Adams ◽  
Jose Manuel Marin-Beloqui ◽  
Georgiana Stoica ◽  
Emilio Palomares

This works shows the influence of the mesoporous TiO2 nature over the carrier recombination kinetics and the perovskite efficiency.


Sign in / Sign up

Export Citation Format

Share Document