scholarly journals Edge Doping Engineering of High-Performance Graphene Nanoribbon Molecular Spintronic Devices

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Haiqing Wan ◽  
Xianbo Xiao ◽  
Yee Sin Ang

We study the quantum transport properties of graphene nanoribbons (GNRs) with a different edge doping strategy using density functional theory combined with nonequilibrium Green’s function transport simulations. We show that boron and nitrogen edge doping on the electrodes region can substantially modify the electronic band structures and transport properties of the system. Remarkably, such an edge engineering strategy effectively transforms GNR into a molecular spintronic nanodevice with multiple exceptional transport properties, namely: (i) a dual spin filtering effect (SFE) with 100% filtering efficiency; (ii) a spin rectifier with a large rectification ratio (RR) of 1.9 ×106; and (iii) negative differential resistance with a peak-to-valley ratio (PVR) of 7.1 ×105. Our findings reveal a route towards the development of high-performance graphene spintronics technology using an electrodes edge engineering strategy.

2018 ◽  
Vol 28 (3) ◽  
pp. 201 ◽  
Author(s):  
Tien Thanh Nguyen ◽  
Hoc Thai Bui ◽  
Ut Van Nguyen ◽  
Tuan Le

Influences of the symmetric Stone-Wales (SW) defect on the electronic transport properties of the zigzag graphene nanoribbons (ZGNRs) has been studied using $\it{ab}$ $\it{ initio}$ simulation based on density functional theory (DFT) combined with non-equilibrium Green's function (NEGF) technique. The calculated transmission spectra T(E) at various bias windows, device densities of states (DDOS), current characteristics as well as local density of states (LDOS) of the defective asymmetric and symmetric ZGNRs are presented in comparison of those for the pristine ZGNRs. It has been established the metallic character of the electronic transport in asymmetric ZGNRs, and in symmetric ones, the current has a semiconductor behavior, with negative differential resistance (NDR) effect. Symmetric SW defect, as a most unfavorable SW defect type for electric conductance, remarkably decreases the current values, but does not change the character of conductivity in both the asymmetric and symmetric ZGNRs. NDR has been explained by the altering by SW defect the number of frontier molecular orbitals entering bias windows.


2021 ◽  
Vol 31 (4) ◽  
pp. 389
Author(s):  
Nguyen Thanh Tien ◽  
Nguyen Thanh Tuan ◽  
Pham Thi Bich Thao

Electronic, magnetic and spin-polarized transport properties of the zigzag-zigzag pentagraphene nanoribbon are investigated theoretically within the framework of density functional theory combined with non-equilibrium Green’s function formalism. It is found that the spinunpolarized ZZ-PGNR behaves as metal. However, the spin-polarized ZZ-PGNRs show to be the magnetic semiconductor properties. More importantly, for the ZZ-PGNRs based device, the spin-filtering effect occurs strongly near Fermi level. Our findings suggest that ZZ-PGNRs might hold a significant promise for developing spintronic devices.


Author(s):  
Takuya Kudo ◽  
Qinqiang Zhang ◽  
Ken Suzuki ◽  
Hideo Miura

Abstract Graphene nanoribbons (GNRs), nano scale strips of graphene which consists of carbon hexagonal unit cell, are expected as next generation materials for high performance devices because of its unique super-conductive properties. When the strip width of graphene is cut into nano-scale, thinner than 70 nm, however, band gap starts to appear in the thin GNRs at room temperature, and thus, they show semiconductive properties. Previous studies have shown that the bad gap of GNR is highly sensitive to strain, which indicates that GNRs are candidates for a detective element of highly sensitive strain sensors. In practical applications, ohmic contact between a metallic electrode and a semiconductive detective element is indispensable for these sensors. By considering the effect of the width of GNRs on their electronic properties, dumbbell-shape GNRs (DS-GNRs) structures have been proposed for the basic structure of the GNR-base strain sensors, which consisted of GNRs with two different widths. Center portion of the DS-GNR is narrower than 70 nm and GNRs wider than 70 nm are attached at the both ends of the center GNR as electrode. Both semiconductive and metallic portions of a strain sensor consist of only carbon atoms using this DS-GNR structure. Even though this structure consists of one material, the effect of the interaction between two metallic and semiconductive GNRs must be clarified to realize the strain sensor with high performance. In this study, first principle calculations were applied to the analysis of the electronic band structure of the DS-GNR based on density functional theory (DFT). It was found that the local distribution of energy states of electrons and charges varied drastically as strong functions of the length of GNRs and the magnitude of the applied strain. The current through the DS-GNR structure was converged as the length of the semiconductive portion increased. In the models with enough length, transport property of the DS-GNR showed high sensitivity to strain. Thus, the effective resistivity of the structure varied from metallic to semiconductive, and therefore, this structure is appropriate for the next-generation highly sensitive and deformable strain sensors.


2014 ◽  
Vol 28 (08) ◽  
pp. 1450019 ◽  
Author(s):  
LILING CUI ◽  
BINGCHU YANG ◽  
XINMEI LI ◽  
JUN HE ◽  
MENGQIU LONG

Using nonequlilibrium Green's functions in combination with the density-functional theory, we investigate the spin transport properties of molecular junction based on metal ( Cu , Fe ) phthalocyanines between V-shaped zigzag-edged graphene nanorribons. The results show that the electronic transport properties mainly depend on the center transition metal. The negative differential resistance behaviors and spin splitting phenomenon can be observed.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yun Li ◽  
Xiaobo Li ◽  
Shidong Zhang ◽  
Liemao Cao ◽  
Fangping Ouyang ◽  
...  

AbstractStrain engineering has become one of the effective methods to tune the electronic structures of materials, which can be introduced into the molecular junction to induce some unique physical effects. The various γ-graphyne nanoribbons (γ-GYNRs) embedded between gold (Au) electrodes with strain controlling have been designed, involving the calculation of the spin-dependent transport properties by employing the density functional theory. Our calculated results exhibit that the presence of strain has a great effect on transport properties of molecular junctions, which can obviously enhance the coupling between the γ-GYNR and Au electrodes. We find that the current flowing through the strained nanojunction is larger than that of the unstrained one. What is more, the length and strained shape of the γ-GYNR serves as the important factors which affect the transport properties of molecular junctions. Simultaneously, the phenomenon of spin-splitting occurs after introducing strain into nanojunction, implying that strain engineering may be a new means to regulate the electron spin. Our work can provide theoretical basis for designing of high performance graphyne-based devices in the future.


2018 ◽  
Vol 32 (29) ◽  
pp. 1850323
Author(s):  
Ting Ting Zhang ◽  
Cai Juan Xia ◽  
Bo Qun Zhang ◽  
Xiao Feng Lu ◽  
Yang Liu ◽  
...  

The electronic transport properties of oligo p-phenylenevinylene (OPV) molecule sandwiched with symmetrical or asymmetric tailoring graphene nanoribbons (GNRs) electrodes are investigated by nonequilibrium Green’s function in combination with density functional theory. The results show that different tailored GNRs electrodes can modulate the current–voltage characteristic of molecular devices. The rectifying behavior can be observed with respect to electrodes, and the maximum rectification ratio can reach to 14.2 in the asymmetric AC–ZZ GNRs and ZZ–AC–ZZ GNRs electrodes system. In addition, the obvious negative differential resistance can be observed in the symmetrical AC-ZZ GNRs system.


2015 ◽  
Vol 1727 ◽  
Author(s):  
Yasutaka Nishida ◽  
Takashi Yoshida ◽  
Fumihiko Aiga ◽  
Yuichi Yamazaki ◽  
Hisao Miyazaki ◽  
...  

ABSTRACTIn this study, we investigated the influence of line defects consisting of pentagon-heptagon (5-7) pairs on the electronic transport properties of zigzag-edged and armchair-edged graphene nanoribbons (GNRs). Using the first-principles density functional theory, we study their electronic properties. To investigate their current-voltage (I-V) characteristics at low bias voltage (∼ 1 meV), we use the nonequilibrium Green’s function method. As a result, we found that the conductance of the GNRs having a connected line defect between source and drain shows better performance than that of the ideal zigzag-edged GNRs (ZGNRs). A detailed investigation of the transmission spectra and the wave function around the Fermi level reveals that the line defects arranged along the transport direction work similar to an edge state of the ZGNRs and can be an additional conduction channel. Our results suggest that such a line defect can be effective for low-resistance GNR interconnects.


Author(s):  
Yaoxing Sun ◽  
Bei Zhang ◽  
shidong zhang ◽  
Dan Zhang ◽  
Jiwei Dong ◽  
...  

Based on MoC2 nanoribbons and poly-(terphenylene-butadiynylene) (PTB) molecules, we designed MoC2-PTB molecular spintronic devices and investigated their spin-dependent electron transport properties by using spin-polarized density functional theory and non-equilibrium Green's...


2019 ◽  
Vol 33 (29) ◽  
pp. 1950347 ◽  
Author(s):  
Xiao-Chong Liang ◽  
Xiao-Jiang Long ◽  
Lin Zhang ◽  
Jun Zhu

The structural and electronic transport properties of [Formula: see text] clusters are studied based on density functional theory (DFT). Their most stable structures are proved to be planar by the particle swarm optimization (PSO) algorithm, and have decreasing binding energies with the increasing number of Ga atom in clusters. The electronic transport properties of these clusters connected with two Al(1 0 0) electrodes are calculated by combining nonequilibrium Green’s-function (NEGF) with DFT. Most of them have an equilibrium conductance of above [Formula: see text], except for [Formula: see text]. Negative differential resistance (NDR) phenomenon of different level is observed in their I–V curves in bias ranges of from [Formula: see text] to [Formula: see text] V and from 0.7 to 1.1 V.


2011 ◽  
Vol 10 (03) ◽  
pp. 533-538 ◽  
Author(s):  
CHUN-MEI LIU ◽  
NIAN-HUA LIU ◽  
ZHENG-FANG LIU ◽  
LI-PING AN

By using the first-principles density functional theory combining with the nonequilibrium Green’s function techniques, we investigate the electronic structure and the spin-polarization-dependent electronic transport of zigzag graphene nanoribbons (ZGNR) with a defect of vacancy. The total energy of the graphene ribbons corresponding to different vacancy locations is calculated to analyze the stability of the structures. It is found that the existence of a vacancy causes a significant change in the electronic band gap. The electronic band and the transport become spin-polarization-dependent. The calculated I–V characteristic shows that the spin-polarization-dependent effect can be enhanced under a finite bias voltage.


Sign in / Sign up

Export Citation Format

Share Document