First Principle Analysis of the Effect of Strain on Electronic Transport Properties of Dumbbell-Shape Graphene Nanoribbons

Author(s):  
Takuya Kudo ◽  
Qinqiang Zhang ◽  
Ken Suzuki ◽  
Hideo Miura

Abstract Graphene nanoribbons (GNRs), nano scale strips of graphene which consists of carbon hexagonal unit cell, are expected as next generation materials for high performance devices because of its unique super-conductive properties. When the strip width of graphene is cut into nano-scale, thinner than 70 nm, however, band gap starts to appear in the thin GNRs at room temperature, and thus, they show semiconductive properties. Previous studies have shown that the bad gap of GNR is highly sensitive to strain, which indicates that GNRs are candidates for a detective element of highly sensitive strain sensors. In practical applications, ohmic contact between a metallic electrode and a semiconductive detective element is indispensable for these sensors. By considering the effect of the width of GNRs on their electronic properties, dumbbell-shape GNRs (DS-GNRs) structures have been proposed for the basic structure of the GNR-base strain sensors, which consisted of GNRs with two different widths. Center portion of the DS-GNR is narrower than 70 nm and GNRs wider than 70 nm are attached at the both ends of the center GNR as electrode. Both semiconductive and metallic portions of a strain sensor consist of only carbon atoms using this DS-GNR structure. Even though this structure consists of one material, the effect of the interaction between two metallic and semiconductive GNRs must be clarified to realize the strain sensor with high performance. In this study, first principle calculations were applied to the analysis of the electronic band structure of the DS-GNR based on density functional theory (DFT). It was found that the local distribution of energy states of electrons and charges varied drastically as strong functions of the length of GNRs and the magnitude of the applied strain. The current through the DS-GNR structure was converged as the length of the semiconductive portion increased. In the models with enough length, transport property of the DS-GNR showed high sensitivity to strain. Thus, the effective resistivity of the structure varied from metallic to semiconductive, and therefore, this structure is appropriate for the next-generation highly sensitive and deformable strain sensors.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1701
Author(s):  
Ken Suzuki ◽  
Ryohei Nakagawa ◽  
Qinqiang Zhang ◽  
Hideo Miura

In this study, a basic design of area-arrayed graphene nanoribbon (GNR) strain sensors was proposed to realize the next generation of strain sensors. To fabricate the area-arrayed GNRs, a top-down approach was employed, in which GNRs were cut out from a large graphene sheet using an electron beam lithography technique. GNRs with widths of 400 nm, 300 nm, 200 nm, and 50 nm were fabricated, and their current-voltage characteristics were evaluated. The current values of GNRs with widths of 200 nm and above increased linearly with increasing applied voltage, indicating that these GNRs were metallic conductors and a good ohmic junction was formed between graphene and the electrode. There were two types of GNRs with a width of 50 nm, one with a linear current–voltage relationship and the other with a nonlinear one. We evaluated the strain sensitivity of the 50 nm GNR exhibiting metallic conduction by applying a four-point bending test, and found that the gauge factor of this GNR was about 50. Thus, GNRs with a width of about 50 nm can be used to realize a highly sensitive strain sensor.


Author(s):  
Qinqiang Zhang ◽  
Xiangyu Qiao ◽  
Masasuke Kobayashi ◽  
Ken Suzuki

Abstract Graphene shows unique super-conductive properties and graphene nanoribbons (GNRs) with band gaps are the candidates for a sensing component of highly sensitive strain sensors. Usually, there is a large energy barrier between electrodes and semiconductors which is not suitable for electron transfer. Therefore, ohmic contact between them is indispensable for fabricating electronic applications. In order to achieve the ohmic contact between external electrodes and detective elements in the devices, the dumbbell-shaped structure of GNRs was proposed for the basic structure of the GNR-based strain sensors, dubbed as dumbbell-shape GNR (DS-GNR). It consists of a long narrow GNR at the center of the structure as the sensing element coalesced with two wider GNRs at both ends of the narrow GNR as the contact components to external electrodes. Both narrow and wide segments of DS-GNR consist of only carbon atoms. The effect of the interaction in the vicinity of the junction area between wide metallic and narrow semiconductive GNRs, however, has not been clearly demonstrated. In this study, first-principles calculations were implemented to the analysis of the electronic band structure of the DS-GNR. It was found that the localized distribution of the energy states of electrons exists in the wide segment of DS-GNR. The changes varied from wide to narrow segment is smooth and observable as strong functions of the length and the width of DS-GNRs. The current-voltage characteristics showed curved semiconductive-like electronic properties with a smooth-electron flow in DS-GNR. Therefore, the DS-GNR has great potential for the use of next-generation highly sensitive and deformable strain sensors.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Haiqing Wan ◽  
Xianbo Xiao ◽  
Yee Sin Ang

We study the quantum transport properties of graphene nanoribbons (GNRs) with a different edge doping strategy using density functional theory combined with nonequilibrium Green’s function transport simulations. We show that boron and nitrogen edge doping on the electrodes region can substantially modify the electronic band structures and transport properties of the system. Remarkably, such an edge engineering strategy effectively transforms GNR into a molecular spintronic nanodevice with multiple exceptional transport properties, namely: (i) a dual spin filtering effect (SFE) with 100% filtering efficiency; (ii) a spin rectifier with a large rectification ratio (RR) of 1.9 ×106; and (iii) negative differential resistance with a peak-to-valley ratio (PVR) of 7.1 ×105. Our findings reveal a route towards the development of high-performance graphene spintronics technology using an electrodes edge engineering strategy.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Lihua Liu ◽  
Qiang Zhang ◽  
Dong Zhao ◽  
Aoqun Jian ◽  
Jianlong Ji ◽  
...  

Based on the advantages and broad applications of stretchable strain sensors, this study reports a simple method to fabricate a highly sensitive strain sensor with Ag nanomaterials-polydimethylsiloxane (AgNMs-PDMS) to create a synergic conductive network and a sandwich-structure. Three Ag nanomaterial samples were synthesized by controlling the concentrations of the FeCl3 solution and reaction time via the heat polyols thermal method. The AgNMs network’s elastomer nanocomposite-based strain sensors show strong piezoresistivity with a high gauge factor of 547.8 and stretchability from 0.81% to 7.26%. The application of our high-performance strain sensors was demonstrated by the inducting finger of the motion detection. These highly sensitive sensors conform to the current trends of flexible electronics and have prospects for broad application.


2018 ◽  
Vol 6 (24) ◽  
pp. 6575-6583 ◽  
Author(s):  
Guojie Li ◽  
Kun Dai ◽  
Miaoning Ren ◽  
Yan Wang ◽  
Guoqiang Zheng ◽  
...  

A high performance strain sensor based on an aligned conductive fibrous network was prepared with large responsivity, broad sensing range and remarkable stability, demonstrating the applications for detections of both vigorous and subtle human motions.


Soft Matter ◽  
2021 ◽  
Author(s):  
Yang Yu ◽  
Fengjin Xie ◽  
Xinpei Gao ◽  
Liqiang Zheng

The next generation of high-performance flexible electronics has put forward new demands to the development of ionic conductive hydrogels. In recent years, many efforts have been made toward developing double-network...


Nanoscale ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 5884-5890 ◽  
Author(s):  
Zuoli He ◽  
Gengheng Zhou ◽  
Joon-Hyung Byun ◽  
Sang-Kwan Lee ◽  
Moon-Kwang Um ◽  
...  

In this manuscript, we report a novel highly sensitive wearable strain sensor based on a highly stretchable multi-walled carbon nanotube (MWCNT)/Thermoplastic Polyurethane (TPU) fiber obtained via a wet spinning process.


2011 ◽  
Vol 10 (03) ◽  
pp. 533-538 ◽  
Author(s):  
CHUN-MEI LIU ◽  
NIAN-HUA LIU ◽  
ZHENG-FANG LIU ◽  
LI-PING AN

By using the first-principles density functional theory combining with the nonequilibrium Green’s function techniques, we investigate the electronic structure and the spin-polarization-dependent electronic transport of zigzag graphene nanoribbons (ZGNR) with a defect of vacancy. The total energy of the graphene ribbons corresponding to different vacancy locations is calculated to analyze the stability of the structures. It is found that the existence of a vacancy causes a significant change in the electronic band gap. The electronic band and the transport become spin-polarization-dependent. The calculated I–V characteristic shows that the spin-polarization-dependent effect can be enhanced under a finite bias voltage.


Sign in / Sign up

Export Citation Format

Share Document