scholarly journals Synthesis and Characterization of Graphene Oxide Derivatives via Functionalization Reaction with Hexamethylene Diisocyanate

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 870 ◽  
Author(s):  
Jose Luceño-Sánchez ◽  
Georgiana Maties ◽  
Camino Gonzalez-Arellano ◽  
Ana Diez-Pascual

Graphene oxide (GO), the oxidized form of graphene, shows unique properties including high mechanical strength, optical transparency, amphiphilicity and surface functionalization capability that make it attractive in fields ranging from medicine to optoelectronic devices and solar cells. However, its insolubility in non-polar and polar aprotic solvents hinders some applications. To solve this issue, novel functionalization strategies are pursued. In this regard, this study deals with the preparation and characterization of hexamethylene diisocyanate (HDI)-functionalized GO. Different reaction conditions were tested to optimize the functionalization degree (FD), and detailed characterizations were conducted via elemental analysis, Fourier-transformed infrared (FT-IR) and Raman spectroscopies to confirm the success of the functionalization reaction. The morphology of HDI-GO was investigated by transmission electron microscopy (TEM), which revealed an increase in the flake thickness with increasing FD. The HDI-GO showed a more hydrophobic nature than pristine GO and could be suspended in polar aprotic solvents such as N,N-dimethylformamide (DMF), N-methylpyrrolidone (NMP) and dimethyl sulfoxide (DMSO) as well as in low polar/non-polar solvents like tetrahydrofuran (THF), chloroform and toluene; further, the dispersibility improved upon increasing FD. Thermogravimetric analysis (TGA) confirmed that the covalent attachment of HDI greatly improves the thermal stability of GO, ascribed to the crosslinking between adjacent sheets, which is interesting for long-term electronics and electrothermal device applications. The HDI-GO samples can further react with organic molecules or polymers via the remaining oxygen groups, hence are ideal candidates as nanofillers for high-performance GO-based polymer nanocomposites.

Proceedings ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 8 ◽  
Author(s):  
José A. Luceño-Sánchez ◽  
Georgiana Maties ◽  
Camino Gonzalez-Arellano ◽  
Ana M. Díez-Pascual

Graphene oxide (GO), the oxidized form of graphene, shows unique properties, such as strong mechanical strength, high thermal conductivity, amphiphilicity, and surface functionalization capability that make it very attractive in various fields, ranging from medicine to optoelectronic devices and solar cells. However, its insolubility in non-polar and polar aprotic solvents hinders some applications. To solve this issue, novel functionalization strategies are pursued. In this regard, the current study deals with the preparation and characterization of hexamethylene diisocyanate (HDI)-functionalized GO. Different reaction conditions were tested to optimize the functionalization degree (FD), and detailed characterization was conducted via Fourier-transformed infrared (FT-IR) spectroscopy to confirm the success of the functionalization reaction. The HDI-GO could further react with other organic molecules or polymers via the remaining oxygen groups, which makes them ideal candidates as nanofillers for high-performance GO-based polymer nanocomposites.


2015 ◽  
Vol 18 (3) ◽  
pp. 165-168 ◽  
Author(s):  
M. A. Ghanem ◽  
I. S. El-Hallag

In this manuscript the preparation of highly ordered mesoporous cobalt films containing close packed arrays of spherical holes of uniform size was demonstrated by electrochemical deposition using the hexagonal liquid crystal template (H1-e Co). The template used was Brij®78 surfactant. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), voltammetric methods, and low angle X-ray diffraction (XRD) were used to characterize the electrodeposited mesopores films. Cyclic voltammetry (CV) technique are used to show the mesoporous thin films are promising to be used as electrode materials of high - performance super capacitors.


2019 ◽  
Vol 8 (11) ◽  
pp. M103-M109
Author(s):  
Yaoyao Wang ◽  
Yanxiang Wang ◽  
Yu Tian ◽  
Lianru Ma ◽  
Chengguo Wang ◽  
...  

2016 ◽  
Vol 25 (6) ◽  
pp. 096369351602500 ◽  
Author(s):  
Ruimin Fu ◽  
Mingfu Zhu

Nowadays, the hummers method for preparation of graphene oxide (GO) was improved. The grapheme oxide @ Fe3O4 magnetic nanocomposites were synthesized by co-precipitation method. After analysing the morphology and structure of obtained nanocomposites by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy, the result was shown as follows. The particle size of Fe3O4 in nanocomposites is 30 nm. Many functional groups are found in grapheme oxide, and such groups could be used to bind with the drug. In the test for magnetic properties, the nanocomposites gathered rapidly in the vicinity of the permanent magnet. The nanocomposites, with high superparamagnetism, can be used in the following applications: drug targeting transports, drug carrier, and diagnosis assistant system.


1989 ◽  
Vol 145 ◽  
Author(s):  
K. W. Wang ◽  
V. D. Mattera ◽  
K. Tai ◽  
S. N. G. Chu ◽  
D. D. Roccasecca ◽  
...  

AbstractLong wavelength (l.3pm<X<l.551un) InGaAs/InP multiquantum well (MQW) PIN structures in which the quantum confined Stark effect can be observed, are of particular interest because of their potential for high modulation contrast ratios and high speed operation. The chemistry of trichloride VPE lends itself to the growth of high purity InGaAsP heterostructures which are essential for the realization of high performance optical modulators and switches. In this study, we investigate the application of multi-frit trichloride VPE for the highly uniform epitaxial growth of InGaAs/InP MQW structures on two-inch InP substrates for advanced photonic device applications. The growth of MQW structures with various well thicknesses was studied as was the effect of substrate orientation. The structures have been characterized by infrared absorption and photoluminescence spectroscopy, cross-sectional transmission electron microscopy and double crystal x-ray diffraction.


RSC Advances ◽  
2016 ◽  
Vol 6 (33) ◽  
pp. 27648-27658 ◽  
Author(s):  
Rakesh Das ◽  
Sovan Lal Banerjee ◽  
P. P. Kundu

Polymeric nanocomposites have been fabricated via in situ cationic polymerization of linseed oil in the presence of surface-modified graphene oxide (SGO).


2020 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Ana Maria Díez-Pascual ◽  
José Antonio Luceño-Sánchez

Polyaniline (PANI) is a cheap and widely used conducting polymer due to its exceptional electrical and optoelectronic properties. However, it is insoluble in conventional organic solvents and degrades at high temperatures. To improve the performance of PANI, carbon-based nanomaterials, such as graphene, graphene oxide (GO), and their derivatives, can be incorporated into a PANI matrix. In this work, hexamethylene diisocyanate-modified GO was used as a reinforcement to prepare PANI/HDI−GO nanocomposites by means of the in situ polymerization of aniline in the presence of HDI−GO followed by ultrasonication and solution casting. The effect of the HDI−GO functionalization degree and concentration on the final properties of the nanocomposites was explored by scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), tensile tests, and four-point probe measurements. A homogenous dispersion of the HDI−GO nanosheets was found as well as very strong PANI-HDI−GO interactions via pi-pi stacking, H-bonding, and hydrophobic and electrostatic charge-transfer complexes. A continuous improvement in thermal stability and electrical conductivity was found with increasing nanomaterial concentration, the increments being larger with the increasing HDI−GO degree of functionalization. The nanocomposites showed a very good combination of rigidity, strength, ductility, and toughness. The approach developed herein opens up a versatile route to prepare multifunctional graphene-based nanocomposites with conductive polymers for a broad range of applications, including photovoltaic organic solar cells.


Sign in / Sign up

Export Citation Format

Share Document