scholarly journals Effect of Varying the Ratio of Carbon Black to Vapor-Grown Carbon Fibers in the Separator on the Performance of Li–S Batteries

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 436 ◽  
Author(s):  
Hearin Jo ◽  
Jeonghun Oh ◽  
Yong Lee ◽  
Myung-Hyun Ryou

Lithium–sulfur (Li–S) batteries are expected to be very useful for next-generation transportation and grid storage because of their high energy density and low cost. However, their low active material utilization and poor cycle life limit their practical application. The use of a carbon-coated separator in these batteries serves to inhibit the migration of the lithium polysulfide intermediate and increases the recyclability. We report the extent to which the electrochemical performance of Li–S battery systems depends on the characteristics of the carbon coating of the separator. Carbon-coated separators containing different ratios of carbon black (Super-P) and vapor-grown carbon fibers (VGCFs) were prepared and evaluated in Li–S batteries. The results showed that larger amounts of Super-P on the carbon-coated separator enhanced the electrochemical performance of Li–S batteries; for instance, the pure Super-P coating exhibited the highest discharge capacity (602.1 mAh g−1 at 150 cycles) with a Coulombic efficiency exceeding 95%. Furthermore, the separators with the pure Super-P coating had a smaller pore structure, and hence, limited polysulfide migration, compared to separators containing Super-P/VGCF mixtures. These results indicate that it is necessary to control the porosity of the porous membrane to control the movement of the lithium polysulfide.

Author(s):  
Hearin Jo ◽  
Jeonghun Oh ◽  
Yong Min Lee ◽  
Myung-Hyun Ryou

Lithium sulfur (Li–S) batteries are expected to be very useful for next-generation transportation and grid storage because of their high energy density and low cost. However, their low active material utilization and poor cycle life limit their practical application. The use of a carbon-coated separator in these batteries serves to inhibit the migration of the lithium polysulfide intermediate and increases the recyclability. We report the extent to which the electrochemical performance of Li–S battery systems depends on the characteristics of the carbon coating of the separator. Carbon-coated separators containing different ratios of carbon black (Super-P) and vapor-grown-carbon-fibers (VGCF) were prepared and evaluated in Li–S batteries. The results showed that larger amounts of Super-P on the carbon-coated separator enhanced the electrochemical performance of Li–S batteries; for instance, the pure Super-P coating exhibited the highest discharge capacity (602.1 mAh g-1 at 150 cycles) with a Coulombic efficiency exceeding 95%. Furthermore, the separators with the pure Super-P coating had a smaller pore structure, and hence limited polysulfide migration, compared to separators containing Super-P/VGCF mixtures. These results indicate that it is necessary to control the porosity of the porous membrane to control the movement of the lithium polysulfide.


MRS Advances ◽  
2018 ◽  
Vol 3 (60) ◽  
pp. 3501-3506 ◽  
Author(s):  
Gaind P. Pandey ◽  
Joshua Adkins ◽  
Lamartine Meda

ABSTRACTLithium sulfide (Li2S) is one of the most attractive cathode materials for high energy density lithium batteries as it has a high theoretical capacity of 1166 mA h g-1. However, Li2S suffers from poor rate performance and short cycle life due to its insulating nature and polysulfide shuttle during cycling. In this work, we report a facile and viable approach to address these issues. We propose a method to synthesize a Li2S based nanocomposite cathode material by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and graphene oxide (GO) as a matrix to enhance the conductivity, followed by a co-precipitation and high-temperature carbonization process. The Li2S/rGO cathode yields an exceptionally high initial capacity of 817 mAh g-1 based on Li2S mass at C/20 rate and also shows a good cycling performance. The carbon-coated Li2S/rGO cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing carbon coated Li2S/rGO composites as an outstanding system for high-performance lithium-sulfur batteries.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1471
Author(s):  
Shan-Ho Tsai ◽  
Ying-Ru Chen ◽  
Yi-Lin Tsou ◽  
Tseng-Lung Chang ◽  
Hong-Zheng Lai ◽  
...  

Lots of lithium ion battery (LIB) products contain lithium metal oxide LiNi5Co2Mn3O2 (LNCM) as the positive electrode’s active material. The stable surface of this oxide results in high resistivity in the battery. For this reason, conductive carbon-based materials, including acetylene black and carbon black, become necessary components in electrodes. Recently, carbon nano-tube (CNT) has appeared as a popular choice for the conductive carbon in LIB. However, a large quantity of the conductive carbon, which cannot provide capacity as the active material, will decrease the energy density of batteries. The ultra-high cost of CNT, compared to conventional carbon black, is also a problem. In this work, we are going to introduce long-length carbon nano-tube s(L-CNT) into electrodes in order to design a reduced-amount conductive carbon electrode. The whole experiment will be done in a 1Ah commercial type pouch LIB. By decreasing conductive carbon as well as increasing the active material in the positive electrode, the energy density of the LNCM-based 1Ah pouch type LIB, with only 0.16% of L-CNT inside the LNCM positive electrode, could reach 224 Wh/kg and 549 Wh/L, in weight and volume energy density, respectively. Further, this high energy density LIB with L-CNT offers stable cyclability, which may constitute valuable progress in portable devices and electric vehicle (EV) applications.


2016 ◽  
Vol 52 (73) ◽  
pp. 10964-10967 ◽  
Author(s):  
Long Qie ◽  
Arumugam Manthiram

Long-term cycling stability with high-loading sulfur cathodes has been achieved using N,O-codoped carbon hollow fibers as the current collector and Li2S6 as the starting active material.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 424 ◽  
Author(s):  
Almudena Benítez ◽  
Juan Amaro-Gahete ◽  
Dolores Esquivel ◽  
Francisco José Romero-Salguero ◽  
Julián Morales ◽  
...  

Lithium-sulfur (Li-S) batteries have received enormous interest as a promising energy storage system to compete against limited, non-renewable, energy sources due to their high energy density, sustainability, and low cost. Among the main challenges of this technology, researchers are concentrating on reducing the well-known “shuttle effect” that generates the loss and corrosion of the active material during cycling. To tackle this issue, metal-organic frameworks (MOF) are considered excellent sulfur host materials to be part of the cathode in Li-S batteries, showing efficient confinement of undesirable polysulfides. In this study, MIL-88A, based on iron fumarate, was synthesised by a simple and fast ultrasonic-assisted probe method. Techniques such as X-ray diffraction (XRD), Raman spectroscopy, Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), and N2 adsorption/desorption isotherms were used to characterise structural, morphological, and textural properties. The synthesis process led to MIL-88A particles with a central prismatic portion and pyramidal terminal portions, which exhibited a dual micro-mesoporous MOF system. The composite MIL-88A@S was prepared, by a typical melt-diffusion method at 155 °C, as a cathodic material for Li-S cells. MIL-88A@S electrodes were tested under several rates, exhibiting stable specific capacity values above 400 mAh g−1 at 0.1 C (1C = 1675 mA g−1). This polyhedral and porous MIL-88A was found to be an effective cathode material for long cycling in Li-S cells, retaining a reversible capacity above 300 mAh g−1 at 0.5 C for more than 1000 cycles, and exhibiting excellent coulombic efficiency.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5432-5443
Author(s):  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
Benjoe Rey B. Visayas ◽  
Jennifer Woehl ◽  
James A. Golen ◽  
...  

With the cost of renewable energy near parity with fossil fuels, energy storage is paramount. We report a breakthrough on a bioinspired NRFB active-material, with greatly improved solubility, and place it in a predictive theoretical framework.


Author(s):  
Maru Dessie Walle ◽  
You-Nian Liu

AbstractThe lithium–sulfur (Li–S) batteries are promising because of the high energy density, low cost, and natural abundance of sulfur material. Li–S batteries have suffered from severe capacity fading and poor cyclability, resulting in low sulfur utilization. Herein, S-DHCS/CNTs are synthesized by integration of a double-hollow carbon sphere (DHCS) with carbon nanotubes (CNTs), and the addition of sulfur in DHCS by melt impregnations. The proposed S-DHCS/CNTs can effectively confine sulfur and physically suppress the diffusion of polysulfides within the double-hollow structures. CNTs act as a conductive agent. S-DHCS/CNTs maintain the volume variations and accommodate high sulfur content 73 wt%. The designed S-DHCS/CNTs electrode with high sulfur loading (3.3 mg cm−2) and high areal capacity (5.6 mAh mg cm−2) shows a high initial specific capacity of 1709 mAh g−1 and maintains a reversible capacity of 730 mAh g−1 after 48 cycles at 0.2 C with high coulombic efficiency (100%). This work offers a fascinating strategy to design carbon-based material for high-performance lithium–sulfur batteries.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuaki Kisu ◽  
Sangryun Kim ◽  
Takara Shinohara ◽  
Kun Zhao ◽  
Andreas Züttel ◽  
...  

AbstractHigh-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices. However, they have seen limited progress due to challenges associated with developing electrolytes showing reductive/oxidative stabilities and high ionic conductivities. This paper describes a calcium monocarborane cluster salt in a mixed solvent as a Ca-battery electrolyte with high anodic stability (up to 4 V vs. Ca2+/Ca), high ionic conductivity (4 mS cm−1), and high Coulombic efficiency for Ca plating/stripping at room temperature. The developed electrolyte is a promising candidate for use in room-temperature rechargeable Ca batteries.


Sign in / Sign up

Export Citation Format

Share Document