scholarly journals A Microfluidic Chip Embracing a Nanofiber Scaffold for 3D Cell Culture and Real-Time Monitoring

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 588 ◽  
Author(s):  
Jeong Hwa Kim ◽  
Ju Young Park ◽  
Songwan Jin ◽  
Sik Yoon ◽  
Jong-Young Kwak ◽  
...  

Recently, three-dimensional (3D) cell culture and tissue-on-a-chip application have attracted attention because of increasing demand from the industries and their potential to replace conventional two-dimensional culture and animal tests. As a result, numerous studies on 3D in-vitro cell culture and microfluidic chip have been conducted. In this study, a microfluidic chip embracing a nanofiber scaffold is presented. A electrospun nanofiber scaffold can provide 3D cell culture conditions to a microfluidic chip environment, and its perfusion method in the chip can allow real-time monitoring of cell status based on the conditioned culture medium. To justify the applicability of the developed chip to 3D cell culture and real-time monitoring, HepG2 cells were cultured in the chip for 14 days. Results demonstrated that the cells were successfully cultured with 3D culture-specific-morphology in the chip, and their albumin and alpha-fetoprotein production was monitored in real-time for 14 days.

2021 ◽  
Author(s):  
Mattia Saggioro ◽  
Stefania D'Agostino ◽  
Anna Gallo ◽  
Sara Crotti ◽  
Sara D'Aronco ◽  
...  

Three-dimensional (3D) culture systems are progressively getting attention given their potential in overcoming limitations of the classical 2D in vitro systems. Among different supports for 3D cell culture, hydrogels (HGs)...


2019 ◽  
Vol 25 (34) ◽  
pp. 3599-3607 ◽  
Author(s):  
Adeeb Shehzad ◽  
Vijaya Ravinayagam ◽  
Hamad AlRumaih ◽  
Meneerah Aljafary ◽  
Dana Almohazey ◽  
...  

: The in-vitro experimental model for the development of cancer therapeutics has always been challenging. Recently, the scientific revolution has improved cell culturing techniques by applying three dimensional (3D) culture system, which provides a similar physiologically relevant in-vivo model for studying various diseases including cancer. In particular, cancer cells exhibiting in-vivo behavior in a model of 3D cell culture is a more accurate cell culture model to test the effectiveness of anticancer drugs or characterization of cancer cells in comparison with two dimensional (2D) monolayer. This study underpins various factors that cause resistance to anticancer drugs in forms of spheroids in 3D in-vitro cell culture and also outlines key challenges and possible solutions for the future development of these systems.


2018 ◽  
Vol 4 (10) ◽  
pp. eaat4253 ◽  
Author(s):  
C. Pitsalidis ◽  
M. P. Ferro ◽  
D. Iandolo ◽  
L. Tzounis ◽  
S. Inal ◽  
...  

Advances in three-dimensional (3D) cell culture materials and techniques, which more accurately mimic in vivo systems to study biological phenomena, have fostered the development of organ and tissue models. While sophisticated 3D tissues can be generated, technology that can accurately assess the functionality of these complex models in a high-throughput and dynamic manner is not well adapted. Here, we present an organic bioelectronic device based on a conducting polymer scaffold integrated into an electrochemical transistor configuration. This platform supports the dual purpose of enabling 3D cell culture growth and real-time monitoring of the adhesion and growth of cells. We have adapted our system to a 3D tubular geometry facilitating free flow of nutrients, given its relevance in a variety of biological tissues (e.g., vascular, gastrointestinal, and kidney) and processes (e.g., blood flow). This biomimetic transistor in a tube does not require photolithography methods for preparation, allowing facile adaptation to the purpose. We demonstrate that epithelial and fibroblast cells grow readily and form tissue-like architectures within the conducting polymer scaffold that constitutes the channel of the transistor. The process of tissue formation inside the conducting polymer channel gradually modulates the transistor characteristics. Correlating the real-time changes in the steady-state characteristics of the transistor with the growth of the cultured tissue, we extract valuable insights regarding the transients of tissue formation. Our biomimetic platform enabling label-free, dynamic, and in situ measurements illustrates the potential for real-time monitoring of 3D cell culture and compatibility for use in long-term organ-on-chip platforms.


2021 ◽  
Vol 22 (5) ◽  
pp. 2491
Author(s):  
Yujin Park ◽  
Kang Moo Huh ◽  
Sun-Woong Kang

The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathan Jeger-Madiot ◽  
Lousineh Arakelian ◽  
Niclas Setterblad ◽  
Patrick Bruneval ◽  
Mauricio Hoyos ◽  
...  

AbstractIn recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells.


2020 ◽  
Author(s):  
Giraso Kabandana ◽  
Adam Michael Ratajczak ◽  
Chengpeng Chen

Microfluidic technology has tremendously facilitated the development of in vitro cell cultures and studies. Conventionally, microfluidic devices are fabricated with extensive facilities by well-trained researchers, which hinders the widespread adoption of the technology for broader applications. Enlightened by the fact that low-cost microbore tubing is a natural microfluidic channel, we developed a series of adaptors in a toolkit that can twine, connect, organize, and configure the tubing to produce functional microfluidic units. Three subsets of the toolkit were thoroughly developed: the tubing and scoring tools, the flow adaptors, and the 3D cell culture suite. To demonstrate the usefulness and versatility of the toolkit, we assembled a microfluidic device and successfully applied it for 3D macrophage cultures, flow-based stimulation, and automated near real-time quantitation with new knowledge generated. Overall, we present a new technology that allows simple, fast, and robust assembly of customizable and scalable microfluidic devices with minimal facilities, which is broadly applicable to research that needs or could be enhanced by microfluidics.


2021 ◽  
Author(s):  
Anjana Kaveri Badekila ◽  
Praveen Rai ◽  
Sudarshan Kini

Abstract Assessing an optimal reference gene as an internal control for target gene normalization is important during quantitative real time polymerase chain reaction (RT-qPCR) of three-dimensional cell culture. Especially, gene profiling of cancer cells under a complex 3D microenvironment in a polymer scaffold provides a deeper understanding of recapitulation of in vivo tumors. In this aspect, expression of six housekeeping genes (HKG’s): glyceraldehyde-3-phosphodehydrogenase (GAPDH), β-actin (ACTB), beta-2-microglobulin (B2M), 18S ribosomal RNA (18S rRNA), peptidyl-propyl-isomerase A (PPIA), and ribosomal protein L13 (RPL-13)) during the monolayer culture (two-dimensional), and alginate-carboxymethylcellulose scaffold based three-dimensional (3D) cell culture conditioned up to 21 days was analyzed for hepatocellular carcinoma (Huh-7) cell line. The real-time gene expression using RT-qPCR of HCC spheroids in 3D culture were analyzed by determining the primer efficiency, melting curve and quantification cycle analysis of the selected candidate HKG’s. Further, RT-qPCR data were validated using analysis softwares i.e., geNorm and NormFinder for statistical significance. The study indicated RPL-13, 18S rRNA and B2M to be stable among selected referral HKG candidates and considered them as potential internal controls during varying cell culture conditions.


2020 ◽  
Vol 21 (18) ◽  
pp. 6806 ◽  
Author(s):  
Fabrizio Fontana ◽  
Michela Raimondi ◽  
Monica Marzagalli ◽  
Michele Sommariva ◽  
Nicoletta Gagliano ◽  
...  

In the last decade, three-dimensional (3D) cell culture technology has gained a lot of interest due to its ability to better recapitulate the in vivo organization and microenvironment of in vitro cultured cancer cells. In particular, 3D tumor models have demonstrated several different characteristics compared with traditional two-dimensional (2D) cultures and have provided an interesting link between the latter and animal experiments. Indeed, 3D cell cultures represent a useful platform for the identification of the biological features of cancer cells as well as for the screening of novel antitumor agents. The present review is aimed at summarizing the most common 3D cell culture methods and applications, with a focus on prostate cancer modeling and drug discovery.


2010 ◽  
Vol 638-642 ◽  
pp. 506-511 ◽  
Author(s):  
Claudia Bergemann ◽  
Ernst Dieter Klinkenberg ◽  
Frank Lüthen ◽  
Arne Weidmann ◽  
Regina Lange ◽  
...  

Porous tantalum (Ta) biomaterial is designed to function as a scaffold for osseous ingrowths and has found applications in orthopedics. Integration of this Ta foam into the neighboring bone requires that osteoprogenitor cells attach to the implant, grow into the scaffold, proliferate and differentiate to osteoblasts. The aim of the present study was to create an in vitro 3D model system to investigate the interaction of human osteoblasts with porous Ta in the depth of the corpus. To explore active migration of osteoblasts into the Ta scaffold two porous Ta discs (Zimmer, Poland) were horizontally fixed within a clamping ring. Thereby a 3D Ta module with 4 levels is generated, which is placed into a cell culture well with the appropriate medium. Osteoblast-like cells were seeded apical onto the Ta module and cultured for 7 days in humidified atmosphere. Active migration of cells into the scaffold was monitored by field emission scanning electron microscopy (FESEM) imaging of the apical, medial and basal layers. A problem in 3D cell culture is the nutrition of cells inside of the scaffold. Therefore morphological changes and differentiation of the cells in distinct layers were analyzed.


Sign in / Sign up

Export Citation Format

Share Document