scholarly journals Theoretical Modeling and Inverse Analysis of Thermal Conductivity of Skeletons in SiO2 Nano-Insulation Materials

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 934 ◽  
Author(s):  
Xiao-Chen Zhang ◽  
Xin-Lin Xia ◽  
Dong-Hui Li ◽  
Chuang Sun

With the developments in high-performance nano-insulation material technology, theoretical studies on the heat transfer mechanisms in these materials have been conducted. However, the conductivity of nanometer-sized skeletons is still unclear. It is necessary to clarify the thermal conductivity of nanometer-sized solid skeletons in order to better understand the heat transfer mechanisms in nano-insulation materials. In the present study, a theoretical model for the thermal conductivity of nanometer-sized skeletons in nano-insulation materials is presented based upon the meso-structure of the material and the equation of phonon transfer. The size effect in thermal conductivity of the nanometer-sized particles is studied numerically, and the thermal conductivity is theoretically obtained. At the same time, a reverse method is established for the thermal conductivity of nanometer-sized particles based on the method of particle swarm optimization (PSO). The skeleton thermal conductivity for a specific nano-insulation material with a density of 110 kg/m3 and porosity of 0.94 is identified based upon experimental data from literature. Comparison results show that the theoretical conductivity of nanometer-sized skeletons and the identified results give the values of 0.145 and 0.124 W/(m K), respectively, clearly revealing obvious an size effect in the thermal conductivity of nanometer-sized skeletons.

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
J. M. Olivares-Ramírez ◽  
A. Dector ◽  
A. Duarte-Moller ◽  
D. Ortega Díaz ◽  
Diana Dector ◽  
...  

Currently, the automotive industry has made great advances in the incorporation of materials such as carbon fiber in high-performance cars. One of the main problems of these vehicles is warming, which is generated inside due to the heat transfer produced by solar radiation falling on the car, mainly on the roof. This research proposes the preparation of a composite material containing henequen natural fiber as a thermal barrier to be used as the roof of the car. In this research, 35 different laminates of 5 layers were prepared, combining carbon fiber, henequen natural fiber, fiberglass, and additives such as resin + Al2O3 or resin + Al. Reference samples were taken from stainless steel and one reference sample was extracted from the roof of the car. Considering the solar radiation and the heat transfer mechanisms, the temperature of the surface exposed to solar radiation was determined. The thermal conductivity of the 37 samples was determined, and the experimental results showed that the thermal conductivity of the steel with which the roof of the car is manufactured was 13.43 W·m−1·K−1 and that of the proposed laminate was 5.22 W·m−1·K−1, achieving a decrease in the thermal conductivity by 61.13%. Using the temperature and thermal conductivity data, the simulation (ANSYS) of the thermal system was performed. The results showed that the temperature inside the car with the carbon steel, which is currently used to manufacture high-performance cars, would be 62.34°C, whereas that inside the car with the proposed laminate would be 44.96°C, achieving a thermal barrier that allows a temperature difference of 17.38°C.


2014 ◽  
Vol 5 (2) ◽  
pp. 22-28
Author(s):  
S.H. Ibrahim ◽  
Sia W.K. ◽  
A. Baharun ◽  
M.N.M. Nawi ◽  
R. Affandi

 Energy consumption for residential use in Malaysia is keep increasing yearly in order to maintain the internal thermal comfort of the building. Roof insulation material plays a vital role in improving the thermal comforts of the building while reduce the cooling load of the building. Oil palm industry in Malaysia had grown aggressively over the past few decades. Tons of oil palm waste had produced during the process such as empty fruit bunch fiber. Another waste material that available and easy to obtain is paper. Paper is a valuable material that can be recycled. Waste paper comes from different sources such as newspaper, office and printing papers. This study will take advantage of the available resources which could contribute to reduce the environment impact. The aim of this study is to investigate the thermal performance of roof insulation materials using mixture of oil palm fiber and paper pulp with different ratio and thickness. This study found that the thermal performance of the paper pulp is slightly better compare to the oil palm fiber. Thermal conductivity of the particle board reduces around 4.1% by adding the 10% of paper pulp into the total density of the particle board. By adding 75% of paper pulp, the thermal conductivity of the particle board could be reduced to 24.6% compare to the oil palm fiber board under the similar condition. Therefore, from this study, it could be concluded that paper pulp has high potential to be used as a building insulation material.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1899 ◽  
Author(s):  
Haiwei Yang ◽  
Zongqian Wang ◽  
Zhi Liu ◽  
Huan Cheng ◽  
Changlong Li

Aerogel fiber, with the characteristics of ultra-low density, ultra-high porosity, and high specific surface area, is the most potential candidate for manufacturing wearable thermal insulation material. However, aerogel fibers generally show weak mechanical properties and complex preparation processes. Herein, through firstly preparing a cellulose acetate/polyacrylic acid (CA/PAA) hollow fiber using coaxial wet-spinning followed by injecting the silk fibroin (SF) solution into the hollow fiber, the CA/PAA-wrapped SF aerogel fibers toward textile thermal insulation were successfully constructed after freeze-drying. The sheath (CA/PAA hollow fiber) possesses a multiscale porous structure, including micropores (11.37 ± 4.01 μm), sub-micron pores (217.47 ± 46.16 nm), as well as nanopores on the inner (44.00 ± 21.65 nm) and outer (36.43 ± 17.55 nm) surfaces, which is crucial to the formation of a SF aerogel core. Furthermore, the porous CA/PAA-wrapped SF aerogel fibers have many advantages, such as low density (0.21 g/cm3), high porosity (86%), high strength at break (2.6 ± 0.4 MPa), as well as potential continuous and large-scale production. The delicate structure of multiscale porous sheath and ultra-low-density SF aerogel core synergistically inhibit air circulation and limit convective heat transfer. Meanwhile, the high porosity of aerogel fibers weakens heat transfer and the SF aerogel cellular walls prevent infrared radiation. The results show that the mat composed of these aerogel fibers exhibits excellent thermal insulating properties with a wide working temperature from −20 to 100 °C. Therefore, this SF-based aerogel fiber can be considered as a practical option for high performance thermal insulation.


Buildings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 81
Author(s):  
Cassandra Lafond ◽  
Pierre Blanchet

The energy efficiency of buildings is well documented. However, to improve standards of energy efficiency, the embodied energy of materials included in the envelope is also increasing. Natural fibers like wood and hemp are used to make low environmental impact insulation products. Technical characterizations of five bio-based materials are described and compared to a common, traditional, synthetic-based insulation material, i.e., expanded polystyrene. The study tests the thermal conductivity and the vapor transmission performance, as well as the combustibility of the material. Achieving densities below 60 kg/m3, wood and hemp batt insulation products show thermal conductivity in the same range as expanded polystyrene (0.036 kW/mK). The vapor permeability depends on the geometry of the internal structure of the material. With long fibers are intertwined with interstices, vapor can diffuse and flow through the natural insulation up to three times more than with cellular synthetic (polymer) -based insulation. Having a short ignition times, natural insulation materials are highly combustible. On the other hand, they release a significantly lower amount of smoke and heat during combustion, making them safer than the expanded polystyrene. The behavior of a bio-based building envelopes needs to be assessed to understand the hygrothermal characteristics of these nontraditional materials which are currently being used in building systems.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 536
Author(s):  
Hussein Humaish ◽  
. .

The thermal energy of building is determined by the thermal properties of the materials and how to install these materials in the elements of buildings according to the direction of heat transfer. The effectiveness of thermal insulation (glass wool) is dependent on its thermal conductivity which is varies in different directions of fibers of glass wool. Glass wool is formed of fibers and binders tangled together during the industrial process to provide some elasticity. The experimental values of thermal conductivity of the insulation materials are changed according to magnitude of the heat power and direction of fiber arrangement. The thermal conductivity for insulation materials has been measured by using probe method,  Huekseflux ® TP02 used to measure the thermal conductivity by emit the flow perpendicular and parallel to the fibers of glass wool. Two samples of yellow glass wool (density 68 kg/m3) with dimensions (10 ×10 ×30) cm have been used. Hot Disk bulk isotropic module has been used to evaluate thermal conductivity. TPS source (Hot Disk probe reference: 4922) characterized by a diameter of 14.61 mm has been selected. COMSOL® multiphysics axisymmetric 2D model has been used to follow the axial and the radial directions of the heat transfer. 


2011 ◽  
Vol 148-149 ◽  
pp. 116-120
Author(s):  
Jin Lian Qiu ◽  
Zhao Feng Chen ◽  
Jie Ming Zhou ◽  
Jian Wang ◽  
Bin Bin Li ◽  
...  

Due to extremely low thermal conductivity, high modulus, high toughness, light weight and non-combustible property, ultrafine glass wool can be widely used as glass fiber reinforcements in composites, thermal insulation materials, acoustic insulation materials, engineering materials, construction, infrastructure and environmental protection projects and so on. In particular, as a insulation material, glass wool exhibits unique advantages. The predominant process of glass wool is centrifugal blowing process. This paper describes a study of the relationship between the diameter of ultrafine glass fiber and thermal conductivity. The thermal conductivity of ultrafine glass wool decreases with the decrease of average diameter.


2018 ◽  
Vol 9 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Á. Lakatos ◽  
I. Deák ◽  
U. Berardi

The development of high performance insulating materials incorporating nanotechnologies has enabled considerable decrease in the effective thermal conductivity. Besides the use of conventional insulating materials, such as mineral fibers, the adoption of new nano-technological materials such as aerogel, vacuum insulation panels, graphite expanded polystyrene, is growing. In order to reduce the thermal conductivity of polystyrene insulation materials, during the manufacturing, nano/micro-sized graphite particles are added to the melt of the polystyrene grains. The mixing of graphite flakes into the polystyrene mould further reduces the lambda value, since graphite parts significantly reflect the radiant part of the thermal energy. In this study, laboratory tests carried out on graphite insulation materials are presented. Firstly, thermal conductivity results are described, and then sorption kinetic curves at high moisture content levels are shown. The moisture up-taking behaviour of the materials was investigated with a climatic chamber where the relative humidity was 90% at 293 K temperature. Finally, calorific values of the samples are presented after combusting in a bomb calorimeter.


1999 ◽  
Vol 121 (4) ◽  
pp. 972-977 ◽  
Author(s):  
F.-C. Chou ◽  
J. R. Lukes ◽  
C.-L. Tien

The current literature contains many studies of microchannel and micro-pin-fin heat exchangers, but none of them consider the size effect on the thermal conductivity of channel and fin walls. The present study analyzes the effect of size (i.e., the microscale effect) on the microfin performance, particularly in the cryogenic regime where the microscale effect is often appreciable. The size effect reduces the thermal conductivity of microchannel and microfin walls and thus reduces the heat transfer rate. For this reason, heat transfer enhancement by microfins becomes even more important than for macroscale fins. The need for better understanding of heat transfer enhancement by microfins motivates the current study, which resolves three basic issues. First, it is found that the heat, flow choking can occur even in the case of simple plate fins or pin fins in the microscale regime, although choking is usually caused by the accommodation of a cluster of fins at the fin tip. Second, this paper shows that the use of micro-plate-fin arrays yields a higher heat transfer enhancement ratio than the use of the micro-pin-fin arrays due to the stronger reduction of thermal conductivity in micro-pin-fins. The third issue is how the size effect influences the fin thickness optimization. For convenience in design applications, an equation for the optimum fin thickness is established which generalizes the case without the size effect as first reported by Tuckerman and Pease.


Sign in / Sign up

Export Citation Format

Share Document