scholarly journals Preparation and Characterization of Self Nano-Emulsifying Drug Delivery System Loaded with Citraland Its Antiproliferative Effect on Colorectal Cells In Vitro

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1028 ◽  
Author(s):  
Mira Nadiah Mohd Izham ◽  
Yazmin Hussin ◽  
Muhammad Nazirul Mubin Aziz ◽  
Swee Keong Yeap ◽  
Heshu Sulaiman Rahman ◽  
...  

Citral is an active compound naturally found in lemongrass, lemon, and lime. Although this pale-yellow liquid confers low water solubility, the compound has been reported to possess good therapeutic features including antiproliferative and anticancer modalities. The self nano-emulsifying drug delivery system (SNEDDS) is a type of liquid-lipid nanocarrier that is suitable for the loading of insolubilized oil-based compound such as Citral. This study reports the design and optimization of a SNEDDS formulation, synthesis and characterization as well as loading with Citral (CIT-SNEDDS). Further assessment of theantiproliferative effects of CIT-SNEDDS towards colorectal cancer cells was also conducted. SNEDDS composed of coconut oil, dimethyl sulfoxide (DMSO) and Tween 80. CIT-SNEDDS was prepared via gentle agitation of SNEDDS with 0.5% Citral for 72 h at room temperature. Physicochemical characterization was performed using several physicochemical analyses. The average particle size of CIT-SNEDDS was16.86 ± 0.15 nm, zeta potential of 0.58 ± 0.19 mV, and polydispersity index (PDI) of 0.23 ± 0.01. In vitro drug release of Citral from CIT-SNEDDS was 79.25% of release, and for Citral the release percentage was 93.56% over 72 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was done to determine the cytotoxicity effect of CIT-SNEDDS in human colorectal cancer cell lines HT29 and SW620. The half maximal inhibitory concentrations (IC50) for 72 hof CIT-SNEDDS and Citral on SW620 were 16.50 ± 0.87 µg/mL and 22.50 ± 2.50 µg/mL, respectively. The IC50 values of CIT-SNEDDS and Citral after 72 h of treatment on HT29 were 34.10 ± 0.30 µg/mL and 21.77 ± 0.23 µg/mL, respectively. This study strongly suggests that CIT-SNEDDS has permitted the sustained release of Citral and that CIT-SNEDDS constitutes a potential soluble drug nanocarrier that is effective against colorectal cancer cells.

2013 ◽  
Vol 651 ◽  
pp. 227-231
Author(s):  
Qiang Song Wang ◽  
Yuan Lu Cui ◽  
Tian Jiao Dong

The purpose of the study was to prepare and evaluation chitosin-coated alginate/gelatin microspheres for sustained-release drug delivery system in vitro. The microspheres were prepared with an emulsification technique, characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FT-IR), differential scanning calorimetry (DSC). The average particle size of the chitosan-coated alginate/gelatin microspheres was uniform. The results of FT-IR and DSC showed that the microspheres were formed by intermolecular cross-linkages between chitosan and gelatin. The results also implied that the microsphere were a practicable dosage form to increase drug loading ratio for the poorly water-soluble drugs by encapsulated with chitosan. In vitro release of the microsphere indicated that it had a satisfactory sustained-release behavior for the sustained-release drug delivery system.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 375 ◽  
Author(s):  
Raquel B. Liszbinski ◽  
Graziela G. Romagnoli ◽  
Carolina M. Gorgulho ◽  
Caroline R. Basso ◽  
Valber A. Pedrosa ◽  
...  

The aim of the current study is to present a strategy to improve the efficiency of 5-fluorouracil (5-FU), which is widely used as antineoplastic agent against solid tumors-based on the use of gold nanocarriers to overcome the resistance of colorectal cancer cells. 5-FU was loaded on gold nanoparticles (AuNP) coated with anti-EGFR antibodies in order to target them towards colorectal cancer cells that overexpress epidermal growth factor receptors (EGFR). Physicochemical characterization has shown that AuNP size was approximately 20 nm and that AuNP functionalization led to spherical nanoparticles. Flow cytometry allowed observing that some compounds synthesized by our research group have induced apoptosis/necrosis and impaired the proliferation of colon cancer cell lines ‘HCT-116′ and ‘HT-29′. The antibody/drug combination in AuNP (AuNP 5FU EGFR) has improved the apoptosis rate and impaired cell proliferation in both cell lines, regardless of the exposure time. Overall, these results have shown that AuNP functionalization with monoclonal antibodies focused on delivering 5-FU to tumor cells is an exciting strategy against colorectal cancer.


2018 ◽  
Vol 19 (11) ◽  
pp. 3670 ◽  
Author(s):  
Elisa Martella ◽  
Claudia Ferroni ◽  
Andrea Guerrini ◽  
Marco Ballestri ◽  
Marta Columbaro ◽  
...  

Osteosarcoma therapy might be moving toward nanotechnology-based drug delivery systems to reduce the cytotoxicity of antineoplastic drugs and improve their pharmacokinetics. In this paper, we present, for the first time, an extensive chemical and in vitro characterization of dual-loaded photo- and chemo-active keratin nanoparticles as a novel drug delivery system to treat osteosarcoma. The nanoparticles are prepared from high molecular weight and hydrosoluble keratin, suitably functionalized with the photosensitizer Chlorin-e6 (Ce6) and then loaded with the chemotherapeutic drug Paclitaxel (PTX). This multi-modal PTX-Ce6@Ker nanoformulation is prepared by both drug-induced aggregation and desolvation methods, and a comprehensive physicochemical characterization is performed. PTX-Ce6@Ker efficacy is tested on osteosarcoma tumor cell lines, including chemo-resistant cells, using 2D and 3D model systems. The single and combined contributions of PTX and Ce6 is evaluated, and results show that PTX retains its activity while being vehiculated through keratin. Moreover, PTX and Ce6 act in an additive manner, demonstrating that the combination of the cytostatic blockage of PTX and the oxidative damage of ROS upon light irradiation have a far superior effect compared to singularly administered PTX or Ce6. Our findings provide the proof of principle for the development of a novel, nanotechnology-based drug delivery system for the treatment of osteosarcoma.


2021 ◽  
Author(s):  
Reza Davarnejad ◽  
Kiyana Layeghy ◽  
Meysam Soleymani ◽  
Arvin Ayazi

Abstract Quercetin, a natural polyphenolic compound, has attracted much attention due to its great therapeutic potential against various types of diseases. But clinical applications of quercetin are limited due to its poor aqueous solubility and low bioavailability. The main purpose of this research was to evaluate the therapeutic potential of quercetin-loaded Pluronic F127 (PF127)/Tween 80 mixed nanomicelles as a passive targeted drug delivery system for breast cancer therapy. To this end, quercetin-loaded mixed nanomicelles with different mass ratios of drug:PF127:Tween 80 were prepared by the thin-film hydration method. The highest drug loading and entrapment efficiency were obtained to be 2.3% and 98.0%, respectively, for mixed micelles with drug:PF127:Tween 80 ratio of 1:40:15. The physical interactions of quercetin with PF127 and Tween 80 at optimized ratio was investigated by XRD and FTIR analyses. The mean hydrodynamic size and surface charge of prepared nanomicelles, measured by DLS and zeta potential analyses, were 22.1 nm and -7.63 mV, respectively. The results of in-vitro drug release experiments showed that, the mixed micellar system has a prolong and sustained release behavior compared to the solution of free quercetin. Moreover, the in-vitro cytotoxicity studies of quercetin-loaded mixed nanomicelles on breast cancer cells (MCF-7) revealed that, the encapsulated drug have a lower IC50 value (8.9 µg/mL) compared to the free drug (49.2 µg/mL). Our results suggest that, quercetin-loaded mixed nanomicelles can be considered as a promising drug delivery system with prolonged release and potentiated cytotoxicity against breast cancer cells.


2020 ◽  
pp. 088532822096513
Author(s):  
Chao Song ◽  
Chao Gao ◽  
Jing Zhao ◽  
Zhenxin Wang

Docetaxel (DOX) is usually one of drugs used for breast cancer treatment. The key of targeted drug delivery therapy is to deliver effective drugs directly and safely to the tumor focus via an efficient targeting drug carrier with immunogenicity. In this study, Long-circulating targeted drug carrying microspheres (DOX-PEG-EpCAM-MNs) entrapping DOX were constructed. In addition, both cytotoxicity and magnetic resonance imaging (MRI) analyses were performed to establish a mouse model and further complete corresponding performance analysis.The results showed that the average particle size of DOX-PEG-EpCAM-MNs was 139.3 ± 1.6 nm. Morphological analysis proves that they are spherical and uniformly dispersed. The Corresponding entrapment rate and drug carrying capacity are 82.43% and 7.16% respectively. Additionally, MRI shows that they have the capability to track tumor cells within 5 days. This study established a safe and efficient breast cancer cells targeted long-circulating drug delivery system.


2011 ◽  
Vol 113 (9) ◽  
pp. 1113-1123 ◽  
Author(s):  
Konstantinos N. Kontogiannopoulos ◽  
Andreana N. Assimopoulou ◽  
Konstantinos Dimas ◽  
Vassilios P. Papageorgiou

2019 ◽  
Vol 819 ◽  
pp. 15-20
Author(s):  
Teeratas Kansom ◽  
Ekachai Dumkliang ◽  
Prasopchai Patrojanasophon ◽  
Warayuth Sajomsang ◽  
Rungnapha Saeeng ◽  
...  

A site-specific drug delivery system of anticancer agents has been delveloped to enhance the therapeutic efficacy and reduce toxicity to the normal tissue. Semi-synthetic andrographolide analogue 3A.1 (19-tert-butyldiphenylsilyl-8,17-epoxy andrographolide) is one of the potential natural anticancer compounds against many types of cancer including colorectal cancer cells. However, the clinical applications of this compound are limited because of low water solubility and lack of suitable delivery carriers. This study aimed to increase the aqueous solubility and improve the anticancer efficacy of 3A.1 via active targeting approaches. In this study, 3A.1 was loaded into the polymeric micelles self-assembled from N-naphthyl-N,O-succinyl chitosan (NSC). The micelles were conjugated with folate moiety (Fol-NSC) for targeting to the cancer cells. All of the 3A.1-loaded micelles were prepared by dropping method, and the physicochemical properties (size, charge, morphology, encapsulating efficiency, loading capacity), in vitro release behavior and in vitro anticancer activities against HT29 colorectal cancer cells were investigated. The 3A.1-loaded micelles were successfully formulated by dropping method using NSC or Fol-NSC. The micelles loaded with 40% initial 3A.1 showed the maximum encapsulating efficiency and loading capacity. The micelles were in the nanometer range, having a negative surface charge and a spherical structure. The colon site-specific release of the 3A.1 from the 3A.1-loaded micelles was obtained. The release of 3A.1 from the Fol-NSC micelles was slower than that from the NSC micelles. Moreover, the Fol-NSC micelles exhibited superior anticancer efficacy than that of the NSC micelles and free 3A.1. In conclusions, the 3A.1-loaded Fol-NSC micelles developed in the present study had suitable physicochemical properties. These nanocarriers may be a potential delivery system for targeted delivery of the 3A.1 to colorectal cancer cells.


Sign in / Sign up

Export Citation Format

Share Document