scholarly journals Carbon Nanotubes Incorporated Z-Scheme Assembly of AgBr/TiO2 for Photocatalytic Hydrogen Production under Visible Light Irradiations

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1767 ◽  
Author(s):  
Nasir Shezad ◽  
Ibrahim M. Maafa ◽  
Khairiraihanna Johari ◽  
Ainy Hafeez ◽  
Parveen Akhter ◽  
...  

Photocatalytic H2 production is a promising strategy toward green energy and alternative to carbon-based fuels which are the root cause of global warming and pollution. In this study, carbon nanotubes (CNTs) incorporated Z-scheme assembly of AgBr/TiO2 was developed for photocatalytic H2 production under visible light irradiations. Synthesized photocatalysts were characterized through transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), X-ray diffractometer (XRD), Fourier transform infrared (FTIR), photoluminescence spectra (PL), Brunauer Emmet-Teller(BET), and UV-vis spectroscopy analysis techniques. The composite photocatalysts exhibited a H2 production of 477 ppm which was three-folds higher than that produced by TiO2. The good performance was attributed to the strong interaction of three components and the reduced charge recombination, which was 89 and 56.3 times lower than the TiO2 and AgBr/TiO2. Furthermore, the role of surface acidic and basic groups was assessed and the photocatalytic results demonstrated the importance of surface functional groups. In addition, the composites exhibited stability and reusability for five consecutive cycles of reaction. Thus, improved performance of the photocatalyst was credited to the CNTs as an electron mediator, surface functional groups, higher surface area, enhanced charge separation and extended visible light absorption edge. This work provides new development of Z-scheme photocatalysts for sustainable H2 production.

Author(s):  
Titikshya Mohapatra ◽  
Sakshi Manekar ◽  
Vijyendra Kumar Sahu ◽  
Ashwini Kumar Soni ◽  
Sudip Banerjee ◽  
...  

Abstract This study reports a green approach for the modification of titanium dioxide (TiO2) nanoparticles with immobilization of silver nanoparticles. One of the natural sources i.e., Mangifera indica leaf extract was utilized as reducing and capping agent for the fabrication of Ag-TiO2 nanocatalyst. Further, the surface morphology and band-gap energy of prepared Ag-TiO2 were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and UV–Vis spectroscopy. Also, it was characterized by X-ray Powder Diffraction (XRD) which provides the information regarding the crystallinity of the Ag-TiO2. Subsequently, photo activity of Ag-TiO2 was investigated for the degradation of methylene blue (MB) dye wastewater through visible light driven photoreactor. The Ag-TiO2 provided highest (68%) of photo-degradation efficiency within 110 min for 7.81 × 10−5 mol/L initial MB concentration at pH 8 by using 0.19 g/L photocatalyst. Further, addition of 10 mM H2O2 boost up the MB photodegradation to 74%. The kinetic study confirmed the MB degradation followed first order rate of reaction.


2012 ◽  
Vol 124 (28) ◽  
pp. 7104-7107 ◽  
Author(s):  
Patraporn Luksirikul ◽  
Karaked Tedsree ◽  
Mark G. Moloney ◽  
Malcolm L. H. Green ◽  
Shik Chi Edman Tsang

2014 ◽  
Vol 787 ◽  
pp. 35-40 ◽  
Author(s):  
Xiao Yan Zhou ◽  
Peng Wei Zhou ◽  
Hao Guo ◽  
Bo Yang ◽  
Ru Fei Ren

The p-n junction photocatalysts, p-CuO (at. 0-25%)/n-ZnO nanocomposite were prepared through hydrothermal method without using any organic solvent or surfactant. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-Ray spectroscopy, and UV-vis spectroscopy. The results demonstrated that the CuO/ZnO nanocomposite presented a two-dimensional morphology composed of sheet-like ZnO nanostructures adorned with CuO nanoparticles. The photocatalytic activity of CuO/ZnO with different Cu/Zn molar rations and pure ZnO synthesized by the identical synthetic route were evaluated by degrading methylene blue (MB) dye under UV-visible light irradiation. The CuO/ZnO with Cu/Zn molar ratio of 4% exhibits the highest photocatalytic activity compared that of the other photocatalysts under the identical conditions. It is mainly attributed to the increased charge separation rate in the nanocomposite and the extended photo-responding range.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tsz-Lung Kwong ◽  
Ka-Fu Yung

Iron-doped zinc oxide nanostar was synthesized by the microwave-assisted surfactant-free hydrolysis method. The as-synthesized Fe-doped ZnO nanostars catalyst was fully characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), and diffuse reflectance UV-vis spectroscopy (UV-DRA). The photocatalytic activity of the photocatalyst was investigated for the photocatalytic degradation of Tropaeolin O under visible light irradiation. It is observed that the doping of Fe ions enhances the absorption of the visible light and thus the photocatalytic degradation rate of Tropaeolin O would increase. Despite the Taguchi orthogonal experimental design method, the photocatalytic conversion could be achieved at 99.8% in the Fe-doped ZnO catalyzed photodegradation reaction under the optimal reaction conditions of catalyst loading (30 mg), temperature (60°C), light distance (0 cm), initial pH (pH = 9), and irradiation time (3 h). The Fe-doped ZnO photocatalyst can also be easily recovered and directly reused for eight cycles with over 70% conversion.


2013 ◽  
Vol 734-737 ◽  
pp. 2163-2167
Author(s):  
Guang Xiu Cao ◽  
Zhong Hou Zhang ◽  
Bin Zhai

Lanthanum doped TiO2 powders were prepared by hydrolysis of titanium tetra-n-butyl oxide and La (NO3)3 in solution. The resulting powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis absorption spectroscopy. The photocatalytic activities of doped samples were evaluated by the decomposition of methylene blue under visible light irradiation. The XRD results showed that the doping of lanthanum could not only efficiently inhibit the grain growth but also suppress the phase transition of anatase to rutile. UV-Vis spectroscopy of lanthanum doping TiO2 indicated that the absorption onset red-shifted to the visible light region. XPS results revealed that La2O3 had formed which could enhance the surface area. The degradation rates of methylene blue verified that the visible light photocatalytic activity of TiO2 has been enhanced by the doping of lanthanum.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1180 ◽  
Author(s):  
Elvin Aliyev ◽  
Volkan Filiz ◽  
Muntazim M. Khan ◽  
Young Joo Lee ◽  
Clarissa Abetz ◽  
...  

The purpose of this work is the structural analysis of graphene oxide (GO) and by means of a new structural model to answer the questions arising from the Lerf–Klinowski and the Lee structural models. Surface functional groups of GO layers and the oxidative debris (OD) stacked on them were investigated after OD was extracted. Analysis was performed successfully using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), X-ray photoemission spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy (SSNMR), standardized Boehm potentiometric titration analysis, elemental analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that graphene oxide layers, as well as oxidative debris contain different functional groups such as phenolic –OH, ketone, lactone, carboxyl, quinone and epoxy. Based on these results, a new structural model for GO layers is proposed, which covers all spectroscopic data and explains the presence of the other oxygen functionalities besides carboxyl, phenolic –OH and epoxy groups.


2019 ◽  
Vol 174 ◽  
pp. 110-119 ◽  
Author(s):  
Muhammad Umer ◽  
Muhammad Tahir ◽  
Muhammad Usman Azam ◽  
Beenish Tahir ◽  
Mohammad Musaab Jaffar ◽  
...  

Nanoscale ◽  
2018 ◽  
Vol 10 (41) ◽  
pp. 19628-19637 ◽  
Author(s):  
Pavan M. V. Raja ◽  
Gibran L. Esquenazi ◽  
Kourtney D. Wright ◽  
Cathren E. Gowenlock ◽  
Bruce E. Brinson ◽  
...  

The direction of electromigration of SWCNTs in the absence of surfactant depends on the presence of catalyst residue, surface functional groups and adsorbed metal ions.


Sign in / Sign up

Export Citation Format

Share Document