scholarly journals The Growth-Arrest-Specific (GAS)-5 Long Non-Coding RNA: A Fascinating lncRNA Widely Expressed in Cancers

2019 ◽  
Vol 5 (3) ◽  
pp. 46 ◽  
Author(s):  
Anton Goustin ◽  
Pattaraporn Thepsuwan ◽  
Mary Kosir ◽  
Leonard Lipovich

Long non-coding RNA (lncRNA) genes encode non-messenger RNAs that lack open reading frames (ORFs) longer than 300 nucleotides, lack evolutionary conservation in their shorter ORFs, and do not belong to any classical non-coding RNA category. LncRNA genes equal, or exceed in number, protein-coding genes in mammalian genomes. Most mammalian genomes harbor ~20,000 protein-coding genes that give rise to conventional messenger RNA (mRNA) transcripts. These coding genes exhibit sweeping evolutionary conservation in their ORFs. LncRNAs function via different mechanisms, including but not limited to: (1) serving as “enhancer” RNAs regulating nearby coding genes in cis; (2) functioning as scaffolds to create ribonucleoprotein (RNP) complexes; (3) serving as sponges for microRNAs; (4) acting as ribo-mimics of consensus transcription factor binding sites in genomic DNA; (5) hybridizing to other nucleic acids (mRNAs and genomic DNA); and, rarely, (6) as templates encoding small open reading frames (smORFs) that may encode short proteins. Any given lncRNA may have more than one of these functions. This review focuses on one fascinating case—the growth-arrest-specific (GAS)-5 gene, encoding a complicated repertoire of alternatively-spliced lncRNA isoforms. GAS5 is also a host gene of numerous small nucleolar (sno) RNAs, which are processed from its introns. Publications about this lncRNA date back over three decades, covering its role in cell proliferation, cell differentiation, and cancer. The GAS5 story has drawn in contributions from prominent molecular geneticists who attempted to define its tumor suppressor function in mechanistic terms. The evidence suggests that rodent Gas5 and human GAS5 functions may be different, despite the conserved multi-exonic architecture featuring intronic snoRNAs, and positional conservation on syntenic chromosomal regions indicating that the rodent Gas5 gene is the true ortholog of the GAS5 gene in man and other apes. There is no single answer to the molecular mechanism of GAS5 action. Our goal here is to summarize competing, not mutually exclusive, mechanistic explanations of GAS5 function that have compelling experimental support.

2021 ◽  
Author(s):  
Kazi Rahman ◽  
Alex A. Compton

The interferon-induced transmembrane ( IFITM ) family performs multiple functions in immunity, including inhibition of virus entry into cells. The IFITM repertoire varies widely between species and consists of protein-coding genes and pseudogenes. The selective forces driving pseudogenization within gene families are rarely understood. In this issue, the human pseudogene IFITM4P is characterized as a virus-induced, long non-coding RNA that contributes to restriction of Influenza A virus by regulating mRNA levels of IFITM1 , IFITM2 , and IFITM3 .


2020 ◽  
Vol 11 (20) ◽  
pp. 6140-6156
Author(s):  
Xiang-Kun Wang ◽  
Xi-Wen Liao ◽  
Rui Huang ◽  
Jian-Lu Huang ◽  
Zi-Jun Chen ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 129
Author(s):  
Katelyn McNair ◽  
Carol L. Ecale Zhou ◽  
Brian Souza ◽  
Stephanie Malfatti ◽  
Robert A. Edwards

One of the main steps in gene-finding in prokaryotes is determining which open reading frames encode for a protein, and which occur by chance alone. There are many different methods to differentiate the two; the most prevalent approach is using shared homology with a database of known genes. This method presents many pitfalls, most notably the catch that you only find genes that you have seen before. The four most popular prokaryotic gene-prediction programs (GeneMark, Glimmer, Prodigal, Phanotate) all use a protein-coding training model to predict protein-coding genes, with the latter three allowing for the training model to be created ab initio from the input genome. Different methods are available for creating the training model, and to increase the accuracy of such tools, we present here GOODORFS, a method for identifying protein-coding genes within a set of all possible open reading frames (ORFS). Our workflow begins with taking the amino acid frequencies of each ORF, calculating an entropy density profile (EDP), using KMeans to cluster the EDPs, and then selecting the cluster with the lowest variation as the coding ORFs. To test the efficacy of our method, we ran GOODORFS on 14,179 annotated phage genomes, and compared our results to the initial training-set creation step of four other similar methods (Glimmer, MED2, PHANOTATE, Prodigal). We found that GOODORFS was the most accurate (0.94) and had the best F1-score (0.85), while Glimmer had the highest precision (0.92) and PHANOTATE had the highest recall (0.96).


2021 ◽  
Vol 10 ◽  
Author(s):  
Jiani Xing ◽  
Haizhou Liu ◽  
Wei Jiang ◽  
Lihong Wang

Long non-coding RNA (lncRNA) was originally defined as the representative of the non-coding RNAs and unable to encode. However, recent reports suggest that some lncRNAs actually contain open reading frames that encode peptides. These coding products play important roles in the pathogenesis of many diseases. Here, we summarize the regulatory pathways of mammalian lncRNA-encoded peptides in influencing muscle function, mRNA stability, gene expression, and so on. We also address the promoting and inhibiting functions of the peptides in different cancers and other diseases. Then we introduce the computational predicting methods and data resources to predict the coding ability of lncRNA. The intention of this review is to provide references for further coding research and contribute to reveal the potential prospects for targeted tumor therapy.


2021 ◽  
Author(s):  
David Staněk

Abstract In this review I focus on the role of splicing in long non-coding RNA (lncRNA) life. First, I summarize differences between the splicing efficiency of protein-coding genes and lncRNAs and discuss why non-coding RNAs are spliced less efficiently. In the second half of the review, I speculate why splice sites are the most conserved sequences in lncRNAs and what additional roles could splicing play in lncRNA metabolism. I discuss the hypothesis that the splicing machinery can, besides its dominant role in intron removal and exon joining, protect cells from undesired transcripts.


2019 ◽  
Vol 21 (2) ◽  
pp. 637-648 ◽  
Author(s):  
Aritro Nath ◽  
Paul Geeleher ◽  
R Stephanie Huang

Abstract Long non-coding RNAs (lncRNAs) play an important role in gene regulation and are increasingly being recognized as crucial mediators of disease pathogenesis. However, the vast majority of published transcriptome datasets lack high-quality lncRNA profiles compared to protein-coding genes (PCGs). Here we propose a framework to harnesses the correlative expression patterns between lncRNA and PCGs to impute unknown lncRNA profiles. The lncRNA expression imputation (LEXI) framework enables characterization of lncRNA transcriptome of samples lacking any lncRNA data using only their PCG profiles. We compare various machine learning and missing value imputation algorithms to implement LEXI and demonstrate the feasibility of this approach to impute lncRNA transcriptome of normal and cancer tissues. Additionally, we determine the factors that influence imputation accuracy and provide guidelines for implementing this approach.


2017 ◽  
Author(s):  
Hyosun Hong ◽  
Han-Ha Chai ◽  
Kyoungwoo Nam ◽  
Dajeong Lim ◽  
Kyung-Tai Lee ◽  
...  

AbstractThe Yeonsan Ogye (Ogye) is a rare Korean domestic chicken breed, the entire body of which, including its feathers and skin, has a unique black coloring. Although some protein-coding genes related to this unique feature have been examined, non-coding elements have not been globally investigated. In this study, high-throughput RNA sequencing and DNA methylation sequencing were performed to dissect the expression landscape of 14,264 Ogye protein-coding and 6900 long non-coding RNA (lncRNA) genes along with DNA methylation landscape in twenty different Ogye tissues. About 75% of Ogye lncRNAs showed tissue-specific expression whereas about 45% of protein-coding genes did. For some genes, the tissue-specific expression levels were inversely correlated with DNA methylation levels in their promoters. About 39% of the tissue-specific lncRNAs displayed functional association with proximal or distal protein-coding genes. In particular, heat shock transcription factor 2 (HSF2)-associated lncRNAs were discovered to be functionally linked to protein-coding genes that are specifically expressed in black skin tissues, tended to be more syntenically conserved in mammals, and were differentially expressed in black tissues relative to white tissues. Our results not only facilitate understanding how the non-coding genome regulates unique phenotypes but also should be of use for future genomic breeding of chickens.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Anna Lozano-Ureña ◽  
Sacri R Ferrón

A long non-coding RNA called lnc-NR2F1 regulates several neuronal genes, including some involved in autism and intellectual disabilities.


2019 ◽  
Vol 294 (3) ◽  
pp. 637-647 ◽  
Author(s):  
Yong Wang ◽  
Zhen Zeng ◽  
Tian-Lei Liu ◽  
Ling Sun ◽  
Qin Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document