scholarly journals Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil

Nitrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 359-377
Author(s):  
Krishna Dhakal ◽  
Bandhu Raj Baral ◽  
Keshab Raj Pokhrel ◽  
Naba Raj Pandit ◽  
Yam Kanta Gaihre ◽  
...  

The optimum dose of fertilizers for crops varies with soil, agro-ecology, and crop management practices. Optimizing application dose is critical to reduce nutrient loss to the environment and increase nitrogen use efficiency (NUE), crop yields, and economic return to farmers. An experiment was conducted to determine the optimum N dose for increasing maize (Zea mays L. cv, Manakamana-3) yield, NUE, and farm profits under rainfed conditions. Five levels of N (0, 60, 120, 180, and 240 kg ha−1), and a non-fertilized treatment were tested in a randomized complete block design with three replications. Effects of each treatment on yield and yield attributing traits, plant lodging and Sterility (plants with no cob or grain formation), NUE, and stay green trait of maize were recorded. Application of N above 120 kg ha−1 (N120) did not have any significant effects on yield and yield components. Nitrogen, at N120 and above, produced highly fertile plants (though sterility slightly increased at N180 and N240), higher N uptake, and lower dead leaf area (18–27%). N120 produced the highest agronomic; yield increase per unit of N application (AEN—26.89 kg grain kg−1 N) and physiological efficiency of N (PEN—42.67 kg grain kg−1 N uptake), and net benefit (USD 500.43). Considering agronomic, economic, and NUE factors, an N dose of 120 kg ha−1 was found optimum for the cultivation of rainfed maize (Manakamana-3) under sandy loam soil.

1960 ◽  
Vol 8 (2) ◽  
pp. 93-97
Author(s):  
G.H. Schroo

200 g double super and/or 100 g K2SO4 were broadcast in a circular strip of loosened soil round each tree on a sandy loam soil of low P, Mg and Ca, medium N and high K status. Leaf Ca was higher in fertilized than in control trees; Mg uptake was not influenced by the treatment; K uptake, already high, was not unduly increased by fertilizing; uptake of P was doubled by P applications; N uptake was not greatly increased. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2018 ◽  
Vol 13 (1) ◽  
pp. 93 ◽  
Author(s):  
Erdona Demiraj ◽  
Angela Libutti ◽  
Jamarbër Malltezi ◽  
Evan Rroço ◽  
Ferdi Brahushi ◽  
...  

European lacustrine systems are frequently exposed to nitrate (NO3–) pollution causing eutrophication processes. An example of these lakes is Shkodra Lake, a large, shallow lake shared by Albania and Montenegro, in the Balkans Peninsula. Shkodra Lake is a natural sink that collects NO3– from agricultural activities, widely diffused in the surrounding area. The additions of wheat straw and biochar have been suggested to increase soil NO3– retention of agricultural lands. To better understand the role of these two organic soil amendments in mitigating NO3– leaching from arable lands, a pot experiment using a representative sandy loam soil of the Skodra Lake basin was performed. More specifically, a greenhouse experiment with Lolium multiflorum L. and Zea mays L., was carried out for three months, to evaluate the concentrations of NO3–-N in leachate and the cumulative leaching losses of NO3–-N, after wheat straw (10 Mg ha–1) and biochar (10 Mg ha–1) soil addition, under the same rate of NPK fertiliser (300 kg ha–1). The effect of the two organic amendments on nitrate retention, was evaluated according to two methods: i) Soil NO3–-N leaching with distilled water; and ii) Soil NO3–-N extraction with 2M KCl. The leached NO3–-N and the Potentially Leachable NO3–-N (2M KCl extraction) were respectively determined. N uptake by plants, as well as the Nitrogen Use Efficiency were also calculated. A retention effect on nitrate was found in Lolium multiflorum L. and wheat straw treatments compared to control, by reducing leached NO3–-N almost to 35%. In SBFL (soil+biochar+fertiliser+Lolium) treatment, biochar effectively reduced the total amount of nitrate in leachate of 27% and 26% compared to SFL (soil+fertiliser+Lolium) and SSFL (soil+straw+fertiliser+Lolium) treatments, respectively. The potentially leachable NO3–-N was two to four times higher than the leached NO3–-N. The amount of potentially leachable NO3–-N per hectare ranged from 220 in SL (soil+Lolium) treatment, to 500 kg ha–1 in SFL. N plant uptake values ranged from 18.16 mg kg–1 in the non- fertilised treatment to 58.06 mg kg–1 soil in SSFM (soil+straw+fertiliser+maize) treatment. The NUE showed a similar trend (from 0 in the non-fertilised treatment to 47.9 % in SSFM). Results indicated a mitigating action of biochar on leaching of NO3–-N (leached up to 100 kg ha–1), despite the retention effect of the two different amendments applied.


2006 ◽  
Vol 54 (4) ◽  
pp. 487-497
Author(s):  
R. K. Setia ◽  
K. N. Sharma ◽  
V. K. Verma

Nitrogen (N) movement in the soil resulting from the long-term application of fertilizer N is an environmental concern when it reaches the groundwater. The distribution of N in the profile of an alkaline sandy loam soil (Typic Haplustept) and its relationship with N uptake by plants was studied after 22 years of continuous cultivation in an annual crop rotation involving maize (Zea mays L.) and wheat (Triticum aestivum L.). Soil samples were collected to a depth of 1.2 m from the 0-0.15, 0.15-0.30, 0.30-0.45, 0.45-0.60, 0.60-0.90 and 0.90-1.20 m layers and analysed for alkaline KMnO4­-oxidisable N (available N) and mineral N (NH4-N and NO3-N). The continuous addition of increasing levels of N resulted in an increase in N content, whereas the combined application of N, P and K caused a decline in its availability. Mineral N (2 M KCl-extractable NH4-N and NO3-N) was the lowest in the N120P35K33.2 treatment plot. The available N and NH4-N decreased with increasing soil depth. However, variations in NO3-N concentration due to differential rates of fertilizer application were observed only to a depth of 0.45 m. This effect was more pronounced in the N180P17.5K33.2 plot. Regression equations were used to predict N uptake by wheat using the N status in different soil layers as independent variables. Multiple regression analysis indicated that the predictability of the relationship between N uptake and available N improved considerably when its status to a soil depth of 0.45 m was included. In the case of NH4-N, a noticeable increase in the coefficient of determination (R2) occurred to a depth of 0.90 m. The R2 value of NO3-N with the N uptake by wheat was quite low in the top layers (to a depth of 0.30 m). However, an increase in the R2 value was observed when lower depths (beyond 0.30 m) were included in the regression analysis, suggesting that the inclusion of subsoil N status is important to achieve better and profitable N supply systems in crop production.


2021 ◽  
Vol 22 (1&2) ◽  
pp. 137-141
Author(s):  
Jayshree K. ◽  
Umesha C.

A field experiment was carried out during Kharif, 2020 at Crop Research Farm, Department of Agronomy, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj (U.P) on sandy loam soil to assess the effect of biofertilizers and phosphorus on growth parameters and yield of Cowpea. The design of field experiment was Randomized block design consisting of ten treatments each replicated thrice. Experimental results showed significant increase in growth parameter viz., Plant height (81.09 cm), number of branches (4.87), number of nodules (53.27), plant dry weight (30.43 g/plant), crop growth rate (12.59 g/m2/plant) and yield attributing parameters viz., pods/plant (14.73), seeds/ pod (8.85), 100-seed weight (8.02 g), seed yield (2.62 t/ha) and biological yield (9.07 t/ha) were recorded with dual inoculation of Phosphate Solubilizing Bacteria and Vesicular Arbuscular Mycorrhiza along with 55 kg phosphorus per hectare.


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 731-738 ◽  
Author(s):  
Roland Harrison ◽  
Sharon Ellis ◽  
Roy Cross ◽  
James Harrison Hodgson

Author(s):  
Ammar Hameed Madi ◽  
Jawad A. Kamal Al-Shibani

This study was conducted to investigate the effect of bacterial bio-fertilization A. chroococcum and P. putide and four levels of compost (0, 1, 2, 3) tons.h-1 on the leaves content of N.P.K elements. The experiment was carried out in one of the greenhouses of the College of Agriculture - University of Al-Qadisiyah during fall season 2018-2019. It designed in accordance with the Randomized Complete Block Design (RCBD) with three replicates in sandy loam soil. The means of treatments were compared with the least significant difference (LSD) at (5)% probability level. The results present that the treatments of A. chroococcum, P. putide and compost at (3) tons.kg-1 significantly increases the leaves content of K.P.K compared to all other treatments in the flowering stage (4.970, 0.5000, and 4.930) mg.kg-1, respectively. This treatment was followed by the effect of the treatment of A. chroococcum and compost at (3) tons.kg-1, which increases the values of all traits except the leaf content of (P). Bio-fertilizer with P. putide + A. chroococcum significantly increases the leaves' content of P.


2020 ◽  
Vol 18 (4) ◽  
pp. 84-87
Author(s):  
Yu.V. Leonova ◽  
◽  
T.A. Spasskaya ◽  

The change in the microbiological activity of sod-podzolic sandy loam soil when using coffee waste and sewage sludge as a fertilizer for oats in comparison with traditional fertilizers is considered. During the study, it was determined that the predominant groups were bacteria and actinomycetes. Bacilli and fungi are few in number. The introduction of sewage sludge and coffee waste into the sod-podzolic sandy loam soil at a dose of 10 t / ha increases the activity of the microflora of the sod-podzolic sandy loam soil, which increases the effective and potential fertility.


2004 ◽  
Vol 3 (1) ◽  
pp. 316
Author(s):  
M. Saleem Akhtar ◽  
Tammo S. Steenhuis ◽  
Brian K. Richards ◽  
Murray B. McBride

Sign in / Sign up

Export Citation Format

Share Document