scholarly journals Influence of Oral Administration of Lactic Acid Bacteria Metabolites on Skin Barrier Function and Water Content in a Murine Model of Atopic Dermatitis

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1858 ◽  
Author(s):  
Yoshihiro Tokudome

The effects of orally administered lactic acid bacteria metabolites on skin were studied using an atopic dermatitis-like murine model generated by feeding HR-AD to mice. Lactic acid bacteria metabolites were obtained by inoculating and culturing soy milk with 35 strains of 16 species of lactic acid bacteria. The atopic dermatitis-like murine model was generated by feeding HR-AD to HR-1 mice for 40 days. The skin condition of HR-AD-fed mice worsened compared with normal mice, showing reduced water content in the stratum corneum, increased transepidermal water loss (TEWL), reduced ceramide AP content in the stratum corneum, and increased epidermis thickness. When HR-AD-fed mice were orally administered a raw liquid containing lactic acid bacteria metabolites, water content in the stratum corneum, TEWL, ceramide AP content in the stratum corneum, and epidermis thickness improved. To determine the active components responsible for these effects, filtrate, residue, and lipid components extracted from the raw liquid containing lactic acid bacteria metabolites were examined. While water-soluble components and residue obtained after filtration had no effects, the lipid fraction showed similar effects to the raw liquid. These findings suggest that lactic acid bacteria metabolites improve skin injury in an atopic dermatitis-like murine model.

Author(s):  
Yoshihiro Tokudome

The effects of orally administered lactic acid bacteria metabolites on the skin were studied using an atopic dermatitis-like murine model created by feeding mice with HR-AD. The lactic acid bacteria metabolites were obtained by inoculating 35 strains of 16 species of lactic acid bacteria into soy milk and culturing them. The atopic dermatitis-like murine model was created by feeding HR-1 mice HR-AD for 40 days. The skin condition of mice that were fed HR-AD worsened compared with normal mice, i.e., reduced water content in the stratum corneum, increased transepidermal water loss (TEWL), reduced ceramide AP content in the stratum corneum, and increased epidermis thickness. When mice that had been fed the HR-AD diet was administered a raw liquid of lactic acid bacteria metabolites orally, the measured values related to water content in the stratum corneum, TEWL, ceramide AP content in the stratum corneum, and epidermis thickness improved. To find out the active components for these effects, filtrate and residue from the raw liquid of lactic acid bacteria metabolites and lipid components extracted from the raw liquid were examined at the same time. Results showed that the water-soluble components or residue after filtration did not demonstrate effects but the raw liquid and the lipid fraction did. These findings suggest that lactic acid bacteria metabolites improve skin injury in an atopic dermatitis-like murine model.


2014 ◽  
Vol 50 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Wanessa Costa Silva Faria ◽  
Gabriel Azevedo de Brito Damasceno ◽  
Márcio Ferrari

Caryocar brasiliense, popularly known in Brazil as “pequi”, is a species widely distributed in the Brazilian Cerrado. The seeds are surrounded by a woody endocarp coated with a yellow fleshy mesocarp rich in oil and vitamin A, whose oil has a useful role in the treatment of skin aging and protection of human skin against UV-induced damage and skin hydration. The aim of this study was to evaluate the effect of cosmetic formulations containing pequi oil (Caryocar brasiliense) on skin hydration, after a single application. Hydration effect assessment was performed by applying the formulations under study (Control – no formulation, vehicle, and vehicle + pequi oil) onto forearm skin of 30 human volunteers. Skin capacitance and Transepidermal Water Loss (TEWL) measurements were analyzed before, and at 1, 2 and 3 hours after, a single application. Evaluation results of a single application of the vehicle containing pequi oil showed an increase in stratum corneum water content, indicating a skin moisturizing effect. Results of the evaluation of immediate effects of TEWL demonstrated that the vehicle containing pequi oil significantly increased skin moisture during the 3 h evaluation period. The formulations containing pequi oil showed clinical efficacy, increasing stratum corneum water content and enhancing skin barrier function.


2018 ◽  
Vol 21 (7) ◽  
pp. 716-725 ◽  
Author(s):  
Jeong A. Kim ◽  
Sung-Hak Kim ◽  
In Sung Kim ◽  
Da Yoon Yu ◽  
Sung Chan Kim ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 359 ◽  
Author(s):  
Trinidad Montero-Vilchez ◽  
María-Victoria Segura-Fernández-Nogueras ◽  
Isabel Pérez-Rodríguez ◽  
Miguel Soler-Gongora ◽  
Antonio Martinez-Lopez ◽  
...  

Multiple diagnostic tools are used to evaluate psoriasis and atopic dermatitis (AD) severity, but most of them are based on subjective components. Transepidermal water loss (TEWL) and temperature are skin barrier function parameters that can be objectively measured and could help clinicians to evaluate disease severity accurately. Thus, the aims of this study are: (1) to compare skin barrier function between healthy skin, psoriatic skin and AD skin; and (2) to assess if skin barrier function parameters could predict disease severity. A cross-sectional study was designed, and epidermal barrier function parameters were measured. The study included 314 participants: 157 healthy individuals, 92 psoriatic patients, and 65 atopic dermatitis patients. TEWL was significantly higher, while stratum corneum hydration (SCH) (8.71 vs. 38.43 vs. 44.39 Arbitrary Units (AU)) was lower at psoriatic plaques than at uninvolved psoriatic skin and healthy controls. Patients with both TEWL > 13.85 g·m−2h−1 and temperature > 30.85 °C presented a moderate/severe psoriasis (psoriasis area severity index (PASI) ≥ 7), with a specificity of 76.3%. TEWL (28.68 vs. 13.15 vs. 11.60 g·m−2 h−1) and temperature were significantly higher, while SCH (25.20 vs. 40.95 vs. 50.73 AU) was lower at AD eczematous lesions than uninvolved AD skin and healthy controls. Patients with a temperature > 31.75 °C presented a moderate/severe AD (SCORing Atopic Dermatitis (SCORAD) ≥ 37) with a sensitivity of 81.8%. In conclusion, temperature and TEWL values may help clinicians to determine disease severity and select patients who need intensive treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ik Jun Moon ◽  
Mi Ra Yun ◽  
Hae Kyeong Yoon ◽  
Keon Hee Lee ◽  
Sun Young Choi ◽  
...  

AbstractCold atmospheric plasma (CAP) has been incorporated into various fields, including promotion of cutaneous wound healing. Atopic dermatitis (AD) is a chronic cutaneous condition characterized by inflammation-induced skin wounds and impaired skin barrier function. To investigate whether CAP may improve AD using an animal model. Dermatophagoides farinae extracts (DFE)-induced murine models of AD were used in this study. The plasma-treated group received a total of 6 CAP treatments during 2 weeks, while the control group did not receive any treatment. Differences in dermatitis severity, transepidermal water loss (TEWL), serum level of immunoglobulin (Ig) E and epidermal thickness were evaluated in both groups. The dermatitis severity was significantly improved by CAP treatment. TEWL was lower in the plasma-treated group compared with the non-treated control group. Serum Ig E dropped significantly after treatment with CAP. Difference in epidermal thickness of the ear skin was not significant between the plasma-treated and non-treated groups. Localized treatment of AD with CAP decreases dermatitis severity, TEWL, and serum Ig E level. These results show CAP’s potentials as a novel therapeutic modality for AD.


2021 ◽  
Vol 46 (3) ◽  
pp. 336
Author(s):  
Restu Yuda Bakrie

This study aims to determine processing of wadi patin fish (Pangasiu hypophthalmus) quick process and not salty, It is a fermented product from fish, in the form of a wet material through a salting process, the addition of spices then followed by fermentation for several days until it produces an aroma and taste. This traditional food is the result of fermentation assisted by synergistic microorganisms, namely lactic acid bacteria. The results of the study by washing fish after the salting process were able to accelerate fermentation from 7 days to 3 days. The best treatment is to wash the fish meat twice after the salting process. the specifications of the resulting wadi are as follows: protein content = 18.64%; salt content = 0.79%; Water content = 58.65%; Fat content = 3.29%; total microbes (LAB) 6.5x104; organoleptic value (taste) = 7.55.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sihan You ◽  
Shuai Du ◽  
Gentu Ge ◽  
Tao Wan ◽  
Yushan Jia

This study aimed to isolate and identify lactic acid bacteria (LAB) from the native grass and naturally fermented silage from the Mongolian Plateau. The effect of selected strains on bacterial community and quality of native grass silage was also studied. Strains XM2, 265, and 842 could grow normally at 15°C–30°C, pH 4.0–8.0, and NaCl 3 and 6.5%; they were identified as Lactiplantibacillus plantarum subsp. plantarum, Pediococcus acidilactici, and Latilactobacillus graminis, by sequencing 16S rRNA, respectively. The three strains (XM2, 265, and 842) and one commercial additive (L) were used as inoculants and singularly added to the native grass. Compared to the control, the dry matter content was significantly (p < 0.05) lower in L and XM2 groups. The water-soluble carbohydrate content was significantly (p < 0.05) higher in control than in other groups. Compared with the control, the crude protein and ammonia nitrogen contents were significantly (p < 0.05) higher and lower in the LAB-treated groups, and the acid and detergent fiber contents were significantly (p < 0.05) reduced in the L and XM2 groups than those in other groups. There was a significant (p < 0.05) difference in the pH value, lactic acid content, and lactic acid-to-acetic acid ratio in L and XM2 groups than in other groups. Compared with the control, the number of LAB was significantly (p < 0.05) higher in LAB-treated silages, whereas no significant (p > 0.05) differences were observed in yeast and aerobic bacteria in all groups. Compared to the control, the Shannon index was significantly (p < 0.05) reduced. Simpson and Chao1 were significantly (p < 0.05) increased. Principal coordinate analysis based on the unweighted UniFrac distance showed clear separation of the bacterial community in fresh materials and LAB-treated silages. Besides, compared to the control, the principal coordinate analysis of LAB-treated silages was also separate. After 30 days of fermentation, the relative abundance of Firmicutes increased and was the primary phylum in all silages. Compared with the control, the abundance of Firmicutes and Proteobacteriawas significantly (p < 0.05) higher and lower in L and XM2 groups. In contrast, no significant differences were observed among control, 265, and 842 groups. At the genus level, the relative abundance of Lactobacillus, Enterobacter, Pediococcus, and Weissella was increased and dominated the native grass fermentation. Compared with the control, the abundance of Lactobacillus was significantly (p < 0.05) higher in L, XM2, and 842 groups, while no significant (p > 0.05) differences were observed between the control and 265 groups. The abundance of Pediococcus was higher than that in other groups. Consequently, the results demonstrated that LAB significantly influenced silage fermentation by reconstructing microbiota, and Lactobacillus was the dominant genus in the native grass silages. Furthermore, the results showed that strain XM2 could effectively improve the silage quality, and it is considered a potential starter for the native grass silage.


Sign in / Sign up

Export Citation Format

Share Document