scholarly journals Treatment of atopic dermatitis using non-thermal atmospheric plasma in an animal model

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ik Jun Moon ◽  
Mi Ra Yun ◽  
Hae Kyeong Yoon ◽  
Keon Hee Lee ◽  
Sun Young Choi ◽  
...  

AbstractCold atmospheric plasma (CAP) has been incorporated into various fields, including promotion of cutaneous wound healing. Atopic dermatitis (AD) is a chronic cutaneous condition characterized by inflammation-induced skin wounds and impaired skin barrier function. To investigate whether CAP may improve AD using an animal model. Dermatophagoides farinae extracts (DFE)-induced murine models of AD were used in this study. The plasma-treated group received a total of 6 CAP treatments during 2 weeks, while the control group did not receive any treatment. Differences in dermatitis severity, transepidermal water loss (TEWL), serum level of immunoglobulin (Ig) E and epidermal thickness were evaluated in both groups. The dermatitis severity was significantly improved by CAP treatment. TEWL was lower in the plasma-treated group compared with the non-treated control group. Serum Ig E dropped significantly after treatment with CAP. Difference in epidermal thickness of the ear skin was not significant between the plasma-treated and non-treated groups. Localized treatment of AD with CAP decreases dermatitis severity, TEWL, and serum Ig E level. These results show CAP’s potentials as a novel therapeutic modality for AD.

2021 ◽  
Vol 10 (2) ◽  
pp. 359 ◽  
Author(s):  
Trinidad Montero-Vilchez ◽  
María-Victoria Segura-Fernández-Nogueras ◽  
Isabel Pérez-Rodríguez ◽  
Miguel Soler-Gongora ◽  
Antonio Martinez-Lopez ◽  
...  

Multiple diagnostic tools are used to evaluate psoriasis and atopic dermatitis (AD) severity, but most of them are based on subjective components. Transepidermal water loss (TEWL) and temperature are skin barrier function parameters that can be objectively measured and could help clinicians to evaluate disease severity accurately. Thus, the aims of this study are: (1) to compare skin barrier function between healthy skin, psoriatic skin and AD skin; and (2) to assess if skin barrier function parameters could predict disease severity. A cross-sectional study was designed, and epidermal barrier function parameters were measured. The study included 314 participants: 157 healthy individuals, 92 psoriatic patients, and 65 atopic dermatitis patients. TEWL was significantly higher, while stratum corneum hydration (SCH) (8.71 vs. 38.43 vs. 44.39 Arbitrary Units (AU)) was lower at psoriatic plaques than at uninvolved psoriatic skin and healthy controls. Patients with both TEWL > 13.85 g·m−2h−1 and temperature > 30.85 °C presented a moderate/severe psoriasis (psoriasis area severity index (PASI) ≥ 7), with a specificity of 76.3%. TEWL (28.68 vs. 13.15 vs. 11.60 g·m−2 h−1) and temperature were significantly higher, while SCH (25.20 vs. 40.95 vs. 50.73 AU) was lower at AD eczematous lesions than uninvolved AD skin and healthy controls. Patients with a temperature > 31.75 °C presented a moderate/severe AD (SCORing Atopic Dermatitis (SCORAD) ≥ 37) with a sensitivity of 81.8%. In conclusion, temperature and TEWL values may help clinicians to determine disease severity and select patients who need intensive treatment.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 697 ◽  
Author(s):  
Tae-Young Kim ◽  
No-June Park ◽  
Jonghwan Jegal ◽  
Sangho Choi ◽  
Sang Woo Lee ◽  
...  

Plants of the genus Wikstroemia have long been used as traditional medicines to treat diseases like pneumonia, rheumatism, and bronchitis. This study was designed to determine the effect of chamaejasmine, a biflavonoid present in W. dolichantha, on atopic dermatitis (AD)-like skin lesions in a 2,4-dinitrochlorobenzene (DNCB)-induced murine model of AD. Initially, we examined the anti-allergic activities of ten flavonoids from W. dolichantha by measuring β-hexosaminidase release from RBL-2H3 cells. Subsequently, an SKH-1 hairless mouse model of AD was developed based on the topical application of DNCB. Chamaejasmine (0.5%) or pimecrolimus (1%, positive control) were applied to dorsal skins of DNCB-sensitized AD mice for two weeks. Serum IL-4 and IgE levels were determined using enzyme-linked immunosorbent assay kits and transepidermal water loss (TEWL) and skin hydration were measured using a Tewameter TM210 and a SKIN-O-MAT, respectively. Of the ten flavonoids isolated from W. dolichantha, chamaejasmine most potently inhibited DNP-specific IgE-induced degranulation in RBL-2H3 cells. Topical administration of chamaejasmine attenuated the clinical symptoms of DNCB-induced dermatitis (i.e., itching, dryness, erythema, and edema). Histological analyses demonstrated that dermal thickness and mast cell infiltration in dermis were significantly reduced by chamaejasmine. In addition, 0.5% chamaejasmine inhibited DNCB-induced increases in total IL-4 and IgE levels in serum, improved skin barrier function, and increased epidermis moisture. Our findings suggest chamaejasmine might be an effective therapeutic agent for the treatment of atopic diseases.


2014 ◽  
Vol 11 (4) ◽  
pp. 59-63
Author(s):  
E T KINDEEVA ◽  
N G KOROTKII ◽  
A N PAMPURA

Background. Structural and functional damages of the epidermal barrier in patients with atopic dermatitis promote the entry of allergens and development of Th2-type allergic inflammation. Moisturizers containing lipids increase the physiological antiinflammatory effects of topical corticosteroids (TGKS), improve the epidermal barrier and reduce the duration of TGKS using preventing further infringement barrier. To evaluate the clinical efficacy of emollient milk Xemose in children with atopic dermatitis. Materials and methods. We examined 27 children with atopic dermatitis. Children were divided into 2 groups: patients in group 1 (n=14) used emollient milk Xemose twice a day on the skin lesions and limbs in the complex therapy, patients in the 2nd group (n=13) received combined therapy incorporating traditional dampening agents on the basis of lanolin (Unna cream) 3 times daily. All patients underwent measurement of transepidermal water loss (TEWl) (Tewameter TM 300, Multi Probe Adapter MPA 5/9, Courage + Khazaka) and the pH of the skin (Skin-pH-Meter, Multi Probe Adapter MPA 5/9, Courage + Khazaka) before and after 2 weeks of therapy. Results. Patients in groupthat used Xemose milk and children in group with Unna cream after 2 weeks showed a statistically significant decrease of TEWl (p=0,041 and p=0,04, respectively). TEWl was significantly lower in children treated for 2 weeks with milk Xemose (p=0,027) than in children treated with Unna cream. in both groups pH skin surface have not changed (р=0,22 and р=0,22 respectively). Conclusion. Clinical efficacy of milk Xemose as compound improving skin barrier function in children with atopic dermatitis was shown.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Akane Tanaka ◽  
Hiroshi Matsuda

Atopic dermatitis (AD) is the extremely complicated syndrome that various abnormalities develop in a heap. There are various factors in patients for the onset and exacerbation of AD, including genetic cofactors of individuals, environmental factors, the failure of the skin barrier function, unfavorable regulation of the immune system, and the hypersensitivity of sensory nerves. In recent years, there have been many trials of the drug discovery that targets itch, because itch is one of the most serious clinical symptoms of AD. The selection of the suitable animal model that represents the condition of patients, as well as innovative analyzing protocols that can precisely evaluate itch, is indispensable for investigation of an effective drug for AD. In the paper, the unique spontaneous animal model for AD (NC/NgaTnd mice) and the novel quantification system of the laboratory animals that may bring a great progress in the future study of itch are outlined.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 914 ◽  
Author(s):  
Jonghwan Jegal ◽  
No-June Park ◽  
Tae-Young Kim ◽  
Sangho Choi ◽  
Sang Woo Lee ◽  
...  

Plants of the genus Wikstroemia are traditionally used to treat inflammatory diseases like bronchitis and rheumatoid arthritis. In the present study, the anti-atopic effects of an EtOH extract of Wikstroemia dolichantha (WDE) on oxazolone- and DNCB (2,4-dinitrochlorobenzene)-induced dermatitis in mice were investigated. Both ears of BALB/c mice were exposed to oxazolone, and dorsal skins of SKH-1 hairless mice were sensitized with DNCB to induce acute eczematous atopic skin lesions. 1% WDE was applied daily to oxazolone- and DNCB-induced AD mice for two or three weeks, respectively. Total IL-4 and IgE concentrations in serum, transepidermal water loss (TEWL) and skin hydration were assessed. High-performance liquid chromatography/mass spectrometry (HPLC/MS) was used to determine the composition of WDE. Dermal application of 1% WDE grossly and histopathologically improved oxazolone- and DNCB-induced AD skin symptoms. Epidermal thickness and mast cell infiltration were significantly lower in animals treated with WDE than in vehicle controls. Furthermore, in addition to reducing DNCB-induced increases in serum IL-4 (interleukin 4) and IgE (immunoglobulin E) levels, WDE also decreased TEWL and increased skin hydration (indicative of improved skin barrier function). The four flavonoids taxifolin, aromadendrin, padmatin and chamaejasmine were tentatively identified in WDE by HPLC-DAD/QTOF-MS. The above results show WDE protected against oxazolone- and DNCB-induced AD in mice by down-regulating the TH2-associated cytokine IL-4 and improving skin barrier function and suggest WDE might be useful for the management of atopic dermatitis.


2021 ◽  
Vol 34 (1) ◽  
pp. 8-18
Author(s):  
Marika Quadri ◽  
Roberta Lotti ◽  
Laura Bonzano ◽  
Silvana Ciardo ◽  
Mario Bruno Guanti ◽  
...  

Background: Emollients capable of restoring the skin barrier function would extend their role beyond basic maintenance therapy in atopic dermatitis (AD). Objectives: Investigate the effect of a novel emollient plus cream (EC; Dermoflan®) on the skin barrier in vitro and in patients with mild-to-moderate AD. Methods: The effect of EC on the skin barrier recovery was evaluated using a tape-stripping (TS) model. After TS, organ cultures were treated with EC (undiluted or diluted 1:1 with water) and analyzed at 18–120 h using hematoxylin and eosin, Oil Red O, immunohistochemical, and immunofluorescent techniques. In a double-blind, randomized study, EC or placebo was applied once daily for 2 months to antecubital folds of the upper and lower limbs of patients with mild-to-moderate AD in clinical remission. Epidermal thickness, vascularization, and epidermal hydration were assessed by optical coherence tomography and corneometry, respectively, at baseline, and 1 and 2 months following treatment initiation. Results: Following TS, EC treatment significantly increased epidermal thickness and lipid content versus diluent in the skin organ culture, as well as claudin-1, involucrin, and caspase-14 expression, suggesting skin barrier repair. EC treatment also decreased keratin-16 expression and increased levels of Toll-like receptors 1 and 2 versus diluent, suggesting involvement in regulating the epidermal immune response. In 20 patients randomized 1:1 to EC or placebo, EC treatment at the elbow fold/popliteal fossa significantly decreased epidermal thickness after 2 months, and the number of blood vessels at the elbow fold after 1 and 2 months, versus placebo. EC significantly improved the skin hydration after 2 months versus baseline. Conclusions: This novel multi-action EC may help to restore epidermal homeostasis and improve the skin of patients with AD. Results indicate that this novel multi-action EC could be a valid adjuvant therapy in patients with AD. Key Message: Novel multi-action emollient cream helps to restore epidermal homeostasis and improves the skin affected by AD.


2021 ◽  
Vol 22 (19) ◽  
pp. 10189
Author(s):  
Young In Lee ◽  
Sang Gyu Lee ◽  
Jemin Kim ◽  
Sooyeon Choi ◽  
Inhee Jung ◽  
...  

Dry and eczema-prone skin conditions such as atopic dermatitis and xerotic eczema primarily indicate an impaired skin barrier function, which leads to chronic pruritus. Here, we investigated the effects of a novel emollient containing H.ECMTM liposome, which contains a soluble proteoglycan in combination with hydrolyzed collagen and hyaluronic acid. A prospective, single-arm study was conducted on 25 participants with mild atopic dermatitis or dry skin to assess the hydration and anti-inflammatory effect of the novel emollient applied daily over four weeks. All efficacy parameters, including itching severity, transepidermal water loss, and skin hydration, improved significantly after four weeks. The in vitro and ex vivo studies confirmed the restoration of the skin’s barrier function. The study revealed the clinical and laboratory efficacy of H.ECMTM liposome in reducing itching and improving the skin’s barrier integrity. Thus, the use of H.ECMTM liposome can be considered a therapeutic option for dry and eczema-prone skin.


Cosmetics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 20 ◽  
Author(s):  
Jade Logger ◽  
Jill Olydam ◽  
Wietske Woliner-van der Weg ◽  
Piet van Erp

The epidermal barrier function is disrupted in various inflammatory skin diseases. Accurate methods to measure skin barrier function are needed to assess the effect of therapeutic agents. Therefore, we developed a noninvasive multiparametric approach to measure four different parameters regarding the skin barrier. In the current pilot study, we evaluate this method in 14 healthy volunteers. We assessed erythema, transepidermal water loss (TEWL), water content, and epidermal thickness at both cheeks before and 30 min after application of Lanette and Vaseline-Lanette cream. For this, we used spectrophotometry, the Aquaflux device, the Epsilon device, and reflection confocal microscopy, respectively. Stratum corneum (SC) thickness was significantly increased after application of both creams (p < 0.05), and this increase was larger after Lanette cream compared to after Vaseline-Lanette cream (p = 0.035). Erythema, TEWL, and water content did not significantly change after cream application. Our multiparametric approach is promising and offers a feasible and practical way to quickly obtain multifaceted information about skin barrier function. Further exploration of this approach after prolonged use of cream and in conditions of disrupted skin barrier are recommended areas for future research.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2016
Author(s):  
Jonghwan Jegal ◽  
No-June Park ◽  
Beom-Geun Jo ◽  
Tae-Young Kim ◽  
Sim-Kyu Bong ◽  
...  

Plants of the genus Wikstroemia are used in Chinese traditional medicine to treat inflammatory diseases, such as arthritis, bronchitis, and pneumonia. The present study was designed to determine whether Wikstroemia ganpi (Siebold and Zucc.) Maxim. offers a potential means of treating 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in mice. Symptoms such as redness, edema, and keratinization in AD mice induced by DNCB were alleviated by the co-application of an ethanolic extract of W. ganpi for 2 weeks. The severity of skin barrier function damage was evaluated by measuring TEWL (transepidermal water loss). TEWLs of DNCB sensitized mouse dorsal skin were reduced by the application of a W. ganpi ethanolic extract, and skin hydration was increased. In addition, the infiltration of inflammatory cells into the dermis was significantly reduced, as were blood levels of IgE and IL-4, which play an important role in the expression of AD. The results of this experiment suggest that W. ganpi is a potential therapeutic agent for AD.


Sign in / Sign up

Export Citation Format

Share Document